Effective Feature-Based Automatic Modulation Classification Method Using DNN Algorithm

Sang Hoon Lee, Kwang-Yul Kim, Jae Hyun Kim, Y. Shin
{"title":"Effective Feature-Based Automatic Modulation Classification Method Using DNN Algorithm","authors":"Sang Hoon Lee, Kwang-Yul Kim, Jae Hyun Kim, Y. Shin","doi":"10.1109/ICAIIC.2019.8669036","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an effective feature-based automatic modulation classification (AMC) method using a deep neural network (DNN). In order to classify the modulation type, we consider effective features according to the modulation signals. The proposed method removes the meaningless features that have little influence on the classification and only uses the effective features that have high influence by analyzing the correlation coefficients. From the simulation results, we observe that the proposed method can make the AMC system low complexity.","PeriodicalId":273383,"journal":{"name":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC.2019.8669036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we propose an effective feature-based automatic modulation classification (AMC) method using a deep neural network (DNN). In order to classify the modulation type, we consider effective features according to the modulation signals. The proposed method removes the meaningless features that have little influence on the classification and only uses the effective features that have high influence by analyzing the correlation coefficients. From the simulation results, we observe that the proposed method can make the AMC system low complexity.
基于DNN算法的有效特征自动调制分类方法
本文提出了一种基于深度神经网络(DNN)的有效特征自动调制分类(AMC)方法。为了对调制类型进行分类,我们根据调制信号考虑有效特征。该方法通过分析相关系数,剔除对分类影响不大的无意义特征,只使用影响较大的有效特征。仿真结果表明,该方法可以降低AMC系统的复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信