Accurate segmentation of Ulva prolifera regions with superpixel and CNNs

Shengke Wang, Lu Liu, Lianghua Duan, Changyin Yu, Guiyan Cai, Feng Gao, Junyu Dong
{"title":"Accurate segmentation of Ulva prolifera regions with superpixel and CNNs","authors":"Shengke Wang, Lu Liu, Lianghua Duan, Changyin Yu, Guiyan Cai, Feng Gao, Junyu Dong","doi":"10.1109/SPAC.2017.8304318","DOIUrl":null,"url":null,"abstract":"To get regions of Ulva prolifera, we propose a novel end-to-end way to segment the Ulva prolifera regions via aggregation of local classify prediction results. We creatively adopt SEEDS (Superpixels Extracted via Energy-Driven Sampling) to generate local multi-scale patches. We use powerful convolution neural networks to learn and classify the patches. At last, mapping the classify prediction results of patches to the whole image according to the patches classify prediction results, we can get more detailed segmentation of Ulva prolifera. As for the dataset, we collected images by UAV (unmanned aerial vehicle) in coastal waters off Qingdao, China. We show experimentally this method achieves great segmentation performance of Ulva prolifera, despite its indistinct features. In contrast, we train the model in fully convolutional networks for semantic segmentation based on our dataset, while our result achieves superior accuracy.","PeriodicalId":161647,"journal":{"name":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2017.8304318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

To get regions of Ulva prolifera, we propose a novel end-to-end way to segment the Ulva prolifera regions via aggregation of local classify prediction results. We creatively adopt SEEDS (Superpixels Extracted via Energy-Driven Sampling) to generate local multi-scale patches. We use powerful convolution neural networks to learn and classify the patches. At last, mapping the classify prediction results of patches to the whole image according to the patches classify prediction results, we can get more detailed segmentation of Ulva prolifera. As for the dataset, we collected images by UAV (unmanned aerial vehicle) in coastal waters off Qingdao, China. We show experimentally this method achieves great segmentation performance of Ulva prolifera, despite its indistinct features. In contrast, we train the model in fully convolutional networks for semantic segmentation based on our dataset, while our result achieves superior accuracy.
利用超像素和cnn对增生Ulva区域进行精确分割
为了得到浒苔的区域,我们提出了一种新的端到端方法,通过对局部分类预测结果的聚合来分割浒苔区域。我们创造性地采用了SEEDS(通过能量驱动采样提取的超像素)来生成局部多尺度补丁。我们使用强大的卷积神经网络来学习和分类patch。最后,根据斑块分类预测结果将斑块分类预测结果映射到整幅图像上,可以得到更详细的浒苔分割。对于数据集,我们使用无人机(UAV)在中国青岛沿海水域采集图像。实验结果表明,尽管该方法具有模糊的特征,但仍能取得较好的分割效果。相比之下,我们在基于我们的数据集的全卷积网络中训练模型进行语义分割,而我们的结果达到了更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信