Data Mining Earthquake Prediction with Multivariate Adaptive Regression Splines and Peak Ground Acceleration

Dadang Priyanto, B. K. Triwijoyo, Deny Jollyta, H. Hairani, Ni Gusti Ayu Dasriani
{"title":"Data Mining Earthquake Prediction with Multivariate Adaptive Regression Splines and Peak Ground Acceleration","authors":"Dadang Priyanto, B. K. Triwijoyo, Deny Jollyta, H. Hairani, Ni Gusti Ayu Dasriani","doi":"10.30812/matrik.v22i3.3061","DOIUrl":null,"url":null,"abstract":"Earthquake research has not yielded promising results because earthquakes have uncertain data parameters, and one of the methods to overcome the problem of uncertain parameters is the nonparametric method, namely Multivariate Adaptive Regression Splines (MARS). Sumbawa Island is part of the territory of Indonesia and is in the position of three active earth plates, so Sumbawa is prone to earthquake hazards. Therefore, this research is important to do. This study aimed to analyze earthquake hazard prediction on the island of Sumbawa by using the nonparametric MARS and Peak Ground Acceleration (PGA) methods to determine the risk of earthquake hazards. The method used in this study was MARS, which has two completed stages: Forward Stepwise and Backward Stepwise. The results of this study were based on testing and parameter analysis obtained a Mathematical model with 11 basis functions (BF) that contribute to the response variable, namely (BF) 1,2,3,4,5,7,9,11, and the basis functions do not contribute 6, 8, and 10. The predictor variables with the greatest influence were 100% Epicenter Distance and 73.8% Magnitude. The conclusion of this study is based on the highest PGA values in the areas most prone to earthquake hazards in Sumbawa, namely Mapin Kebak, Mapin Rea, Pulau Panjang, and Pulau Saringi.","PeriodicalId":364657,"journal":{"name":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30812/matrik.v22i3.3061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Earthquake research has not yielded promising results because earthquakes have uncertain data parameters, and one of the methods to overcome the problem of uncertain parameters is the nonparametric method, namely Multivariate Adaptive Regression Splines (MARS). Sumbawa Island is part of the territory of Indonesia and is in the position of three active earth plates, so Sumbawa is prone to earthquake hazards. Therefore, this research is important to do. This study aimed to analyze earthquake hazard prediction on the island of Sumbawa by using the nonparametric MARS and Peak Ground Acceleration (PGA) methods to determine the risk of earthquake hazards. The method used in this study was MARS, which has two completed stages: Forward Stepwise and Backward Stepwise. The results of this study were based on testing and parameter analysis obtained a Mathematical model with 11 basis functions (BF) that contribute to the response variable, namely (BF) 1,2,3,4,5,7,9,11, and the basis functions do not contribute 6, 8, and 10. The predictor variables with the greatest influence were 100% Epicenter Distance and 73.8% Magnitude. The conclusion of this study is based on the highest PGA values in the areas most prone to earthquake hazards in Sumbawa, namely Mapin Kebak, Mapin Rea, Pulau Panjang, and Pulau Saringi.
基于多变量自适应回归样条曲线和峰值地加速度的数据挖掘地震预测
由于地震数据参数不确定,地震研究一直没有取得令人满意的结果,克服参数不确定问题的方法之一是非参数方法,即多元自适应回归样条(Multivariate Adaptive Regression Splines, MARS)。松巴哇岛是印度尼西亚领土的一部分,处于三个活跃的地球板块的位置,因此容易发生地震灾害。因此,这项研究是很重要的。本研究旨在利用非参数MARS和峰值地面加速度(PGA)方法对松巴哇岛地震危险性进行预测分析,以确定地震危险性。本研究使用的方法是MARS,它有两个完整的阶段:Forward Stepwise和Backward Stepwise。本研究的结果是基于测试和参数分析,得到了一个有11个基函数(BF)对响应变量有贡献的数学模型,即(BF) 1、2、3、4、5、7、9、11,基函数不贡献6、8、10。影响最大的预测变量为震中距离100%和震级73.8%。本研究的结论是基于松巴哇最容易发生地震灾害的地区,即Mapin Kebak, Mapin Rea, Panjang岛和Saringi岛的最高PGA值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信