Accurate CUDA performance modeling for sparse matrix-vector multiplication

Ping Guo, Liqiang Wang
{"title":"Accurate CUDA performance modeling for sparse matrix-vector multiplication","authors":"Ping Guo, Liqiang Wang","doi":"10.1109/HPCSim.2012.6266964","DOIUrl":null,"url":null,"abstract":"This paper presents an integrated analytical and profile-based CUDA performance modeling approach to accurately predict the kernel execution times of sparse matrix-vector multiplication for CSR, ELL, COO, and HYB SpMV CUDA kernels. Based on our experiments conducted on a collection of 8 widely-used testing matrices on NVIDIA Tesla C2050, the execution times predicted by our model match the measured execution times of NVIDIA's SpMV implementations very well. Specifically, for 29 out of 32 test cases, the performance differences are under or around 7%. For the rest 3 test cases, the differences are between 8% and 10%. For CSR, ELL, COO, and HYB SpMV kernels, the differences are 4.2%, 5.2%, 1.0%, and 5.7% on the average, respectively.","PeriodicalId":428764,"journal":{"name":"2012 International Conference on High Performance Computing & Simulation (HPCS)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSim.2012.6266964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper presents an integrated analytical and profile-based CUDA performance modeling approach to accurately predict the kernel execution times of sparse matrix-vector multiplication for CSR, ELL, COO, and HYB SpMV CUDA kernels. Based on our experiments conducted on a collection of 8 widely-used testing matrices on NVIDIA Tesla C2050, the execution times predicted by our model match the measured execution times of NVIDIA's SpMV implementations very well. Specifically, for 29 out of 32 test cases, the performance differences are under or around 7%. For the rest 3 test cases, the differences are between 8% and 10%. For CSR, ELL, COO, and HYB SpMV kernels, the differences are 4.2%, 5.2%, 1.0%, and 5.7% on the average, respectively.
精确的CUDA性能建模稀疏矩阵-向量乘法
本文提出了一种集成的基于分析和概要文件的CUDA性能建模方法,以准确预测CSR, ELL, COO和HYB SpMV CUDA内核的稀疏矩阵向量乘法的内核执行时间。基于我们在NVIDIA Tesla C2050上对8个广泛使用的测试矩阵进行的实验,我们的模型预测的执行时间与NVIDIA SpMV实现的实际执行时间非常匹配。具体来说,对于32个测试用例中的29个,性能差异在7%以下或左右。对于其余3个测试用例,差异在8%到10%之间。对于CSR、ELL、COO和HYB SpMV内核,平均差异分别为4.2%、5.2%、1.0%和5.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信