HiPS: Hierarchical Parameter Synchronization in Large-Scale Distributed Machine Learning

Jinkun Geng, Dan Li, Yang Cheng, Shuai Wang, Junfeng Li
{"title":"HiPS: Hierarchical Parameter Synchronization in Large-Scale Distributed Machine Learning","authors":"Jinkun Geng, Dan Li, Yang Cheng, Shuai Wang, Junfeng Li","doi":"10.1145/3229543.3229544","DOIUrl":null,"url":null,"abstract":"In large-scale distributed machine learning (DML) system, parameter (gradient) synchronization among machines plays an important role in improving the DML performance. State-of-the-art DML synchronization algorithms, either the parameter server (PS) based algorithm or the ring allreduce algorithm, work in a flat way and suffer when the network size is large. In this work, we propose HiPS, a hierarchical parameter (gradient) synchronization framework in large-scale DML. In HiPS, server-centric network topology is used to better embrace RDMA/RoCE transport between machines, and the parameters (gradients) are synchronized in a hierarchical and hybrid way. Our evaluation in BCube and Torus network demonstrates that HiPS can better match server-centric networks. Compared with the flat algorithms (PS-based and ring-based), HiPS reduces the synchronization time by 73% and 75% respectively.","PeriodicalId":198478,"journal":{"name":"Proceedings of the 2018 Workshop on Network Meets AI & ML","volume":"2017 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 Workshop on Network Meets AI & ML","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3229543.3229544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

In large-scale distributed machine learning (DML) system, parameter (gradient) synchronization among machines plays an important role in improving the DML performance. State-of-the-art DML synchronization algorithms, either the parameter server (PS) based algorithm or the ring allreduce algorithm, work in a flat way and suffer when the network size is large. In this work, we propose HiPS, a hierarchical parameter (gradient) synchronization framework in large-scale DML. In HiPS, server-centric network topology is used to better embrace RDMA/RoCE transport between machines, and the parameters (gradients) are synchronized in a hierarchical and hybrid way. Our evaluation in BCube and Torus network demonstrates that HiPS can better match server-centric networks. Compared with the flat algorithms (PS-based and ring-based), HiPS reduces the synchronization time by 73% and 75% respectively.
HiPS:大规模分布式机器学习中的分层参数同步
在大规模分布式机器学习(DML)系统中,机器间的参数(梯度)同步对提高DML性能起着重要作用。最先进的DML同步算法,无论是基于参数服务器(PS)的算法还是环allreduce算法,都以平坦的方式工作,并且在网络规模较大时受到影响。在这项工作中,我们提出了HiPS,一种大规模DML中的分层参数(梯度)同步框架。在HiPS中,以服务器为中心的网络拓扑结构用于更好地支持机器之间的RDMA/RoCE传输,并且参数(梯度)以分层和混合的方式同步。我们对BCube和Torus网络的评估表明,HiPS可以更好地匹配以服务器为中心的网络。与平面算法(基于ps和基于环)相比,HiPS分别减少了73%和75%的同步时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信