Energy analysis method of the laser tracing measurement optical system

Hongfang Chen, Liang Tang, Huixu Song, Bo Yu, Zhaoyao Shi
{"title":"Energy analysis method of the laser tracing measurement optical system","authors":"Hongfang Chen, Liang Tang, Huixu Song, Bo Yu, Zhaoyao Shi","doi":"10.1117/12.2511266","DOIUrl":null,"url":null,"abstract":"This paper proposes an energy analysis method of the laser tracing measurement optical system. Based on the principle of the laser tracing measurement optical system, an energy model is established to analyze the effects of non-ideal optical elements on the energy of the optical system. The simulation results show that the interference pattern is the most obvious when the split ratios of the beam splitters in the interference part and the tracing part are respectively 6:4 and 7:3. Under the above split ratios, the interference signal energy values of four receivers are close to each other and the visibility of fringe pattern reaches 0.99. The visibility of fringe patterns of four interference signals is reduced when the reflectivity of all polarization beam splitters is under non-ideal conditions in an entire optical system. The non-ideality of the transmittance of the polarization beam splitters does not affect the visibility of fringe patterns. The paper provides the theoretical basis for the accuracy improvement, reliability evaluation, optical system design and the selection of optical elements of laser tracing measurement systems.","PeriodicalId":115119,"journal":{"name":"International Symposium on Precision Engineering Measurement and Instrumentation","volume":"267 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Precision Engineering Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2511266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an energy analysis method of the laser tracing measurement optical system. Based on the principle of the laser tracing measurement optical system, an energy model is established to analyze the effects of non-ideal optical elements on the energy of the optical system. The simulation results show that the interference pattern is the most obvious when the split ratios of the beam splitters in the interference part and the tracing part are respectively 6:4 and 7:3. Under the above split ratios, the interference signal energy values of four receivers are close to each other and the visibility of fringe pattern reaches 0.99. The visibility of fringe patterns of four interference signals is reduced when the reflectivity of all polarization beam splitters is under non-ideal conditions in an entire optical system. The non-ideality of the transmittance of the polarization beam splitters does not affect the visibility of fringe patterns. The paper provides the theoretical basis for the accuracy improvement, reliability evaluation, optical system design and the selection of optical elements of laser tracing measurement systems.
激光跟踪测量光学系统的能量分析方法
提出了一种激光跟踪测量光学系统的能量分析方法。基于激光示踪测量光学系统的工作原理,建立了能量模型,分析了非理想光学元件对光学系统能量的影响。仿真结果表明,当分束器在干涉部分和跟踪部分的劈裂比分别为6:4和7:3时,干涉图案最明显。在上述分割比下,4个接收机的干扰信号能量值接近,条纹图可见性达到0.99。在整个光学系统中,当所有偏振分束器的反射率处于非理想状态时,四种干涉信号的条纹图可见性降低。偏振分束器透射率的非理想性不影响条纹图案的可见性。本文为激光示踪测量系统的精度提高、可靠性评估、光学系统设计和光学元件的选择提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信