Vehicle Detection in Satellite Images by Parallel Deep Convolutional Neural Networks

Xueyun Chen, Shiming Xiang, Cheng-Lin Liu, Chunhong Pan
{"title":"Vehicle Detection in Satellite Images by Parallel Deep Convolutional Neural Networks","authors":"Xueyun Chen, Shiming Xiang, Cheng-Lin Liu, Chunhong Pan","doi":"10.1109/ACPR.2013.33","DOIUrl":null,"url":null,"abstract":"Deep convolutional Neural Networks (DNN) is the state-of-the-art machine learning method. It has been used in many recognition tasks including handwritten digits, Chinese words and traffic signs, etc. However, training and test DNN are time-consuming tasks. In practical vehicle detection application, both speed and accuracy are required. So increasing the speeds of DNN while keeping its high accuracy has significant meaning for many recognition and detection applications. We introduce parallel branches into the DNN. The maps of the layers of DNN are divided into several parallel branches, each branch has the same number of maps. There are not direct connections between different branches. Our parallel DNN (PNN) keeps the same structure and dimensions of the DNN, reducing the total number of connections between maps. The more number of branches we divide, the more swift the speed of the PNN is, the conventional DNN becomes a special form of PNN which has only one branch. Experiments on large vehicle database showed that the detection accuracy of PNN dropped slightly with the speed increasing. Even the fastest PNN (10 times faster than DNN), whose branch has only two maps, fully outperformed the traditional methods based on features (such as HOG, LBP). In fact, PNN provides a good solution way for compromising the speed and accuracy requirements in many applications.","PeriodicalId":365633,"journal":{"name":"2013 2nd IAPR Asian Conference on Pattern Recognition","volume":"314 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 2nd IAPR Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2013.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

Abstract

Deep convolutional Neural Networks (DNN) is the state-of-the-art machine learning method. It has been used in many recognition tasks including handwritten digits, Chinese words and traffic signs, etc. However, training and test DNN are time-consuming tasks. In practical vehicle detection application, both speed and accuracy are required. So increasing the speeds of DNN while keeping its high accuracy has significant meaning for many recognition and detection applications. We introduce parallel branches into the DNN. The maps of the layers of DNN are divided into several parallel branches, each branch has the same number of maps. There are not direct connections between different branches. Our parallel DNN (PNN) keeps the same structure and dimensions of the DNN, reducing the total number of connections between maps. The more number of branches we divide, the more swift the speed of the PNN is, the conventional DNN becomes a special form of PNN which has only one branch. Experiments on large vehicle database showed that the detection accuracy of PNN dropped slightly with the speed increasing. Even the fastest PNN (10 times faster than DNN), whose branch has only two maps, fully outperformed the traditional methods based on features (such as HOG, LBP). In fact, PNN provides a good solution way for compromising the speed and accuracy requirements in many applications.
基于并行深度卷积神经网络的卫星图像车辆检测
深度卷积神经网络(DNN)是最先进的机器学习方法。它已被用于许多识别任务,包括手写数字、中文单词和交通标志等。然而,训练和测试深度神经网络是一项耗时的任务。在实际的车辆检测应用中,对速度和精度都有要求。因此,提高深度神经网络的速度,同时保持其高精度,对许多识别和检测应用具有重要意义。我们在DNN中引入平行分支。DNN各层的地图被分成几个平行的分支,每个分支有相同数量的地图。不同的分支之间没有直接的联系。我们的并行深度神经网络(PNN)保持了DNN的相同结构和维度,减少了映射之间的连接总数。分割的分支数越多,PNN的速度越快,传统深度神经网络成为只有一个分支的PNN的一种特殊形式。在大型车辆数据库上的实验表明,随着速度的增加,PNN的检测精度略有下降。即使是最快的PNN(比DNN快10倍),其分支只有两个地图,也完全优于基于特征的传统方法(如HOG, LBP)。事实上,PNN为许多应用中对速度和精度要求的妥协提供了一种很好的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信