Effective Dynamic Load Balance using Space-Filling Curves for Large-Scale SPH Simulations on GPU-rich Supercomputers

Satori Tsuzuki, T. Aoki
{"title":"Effective Dynamic Load Balance using Space-Filling Curves for Large-Scale SPH Simulations on GPU-rich Supercomputers","authors":"Satori Tsuzuki, T. Aoki","doi":"10.1109/SCALA.2016.5","DOIUrl":null,"url":null,"abstract":"Billion of particles are required to describe fluid dynamics by using smoothed particle hydrodynamics (SPH), which computes short-range interactions among particles. In this study, we develop a novel code of large-scale SPH simulations on a multi-GPU platform by using the domain decomposition technique. The computational load of each decomposed domain is dynamically balanced by applying domain re-decomposition, which maintains the same number of particles in each decomposed domain. The performance scalability of the SPH simulation is examined on the GPUs of a TSUBAME 2.5 supercomputer by using two different techniques of dynamic load balance: the slice-grid method and the hierarchical domain decomposition method using the space-filling curve. The weak and strong scalabilities of a test case using 111 million particles are measured with 512 GPUs. In comparison with the slice-grid method, the performance keeps improving in proportion to the number of GPUs in the case of the space-filling curve. The Hilbert curve and the Peano curve show better performance scalabilities than the Morton curve in proportion to the increase in the number of GPUs.","PeriodicalId":410521,"journal":{"name":"2016 7th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCALA.2016.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Billion of particles are required to describe fluid dynamics by using smoothed particle hydrodynamics (SPH), which computes short-range interactions among particles. In this study, we develop a novel code of large-scale SPH simulations on a multi-GPU platform by using the domain decomposition technique. The computational load of each decomposed domain is dynamically balanced by applying domain re-decomposition, which maintains the same number of particles in each decomposed domain. The performance scalability of the SPH simulation is examined on the GPUs of a TSUBAME 2.5 supercomputer by using two different techniques of dynamic load balance: the slice-grid method and the hierarchical domain decomposition method using the space-filling curve. The weak and strong scalabilities of a test case using 111 million particles are measured with 512 GPUs. In comparison with the slice-grid method, the performance keeps improving in proportion to the number of GPUs in the case of the space-filling curve. The Hilbert curve and the Peano curve show better performance scalabilities than the Morton curve in proportion to the increase in the number of GPUs.
基于空间填充曲线的大规模SPH模拟的有效动态负载平衡
使用平滑粒子流体动力学(SPH)来描述流体动力学需要数十亿个粒子,SPH计算粒子之间的短程相互作用。在本研究中,我们利用域分解技术开发了一种在多gpu平台上进行大规模SPH仿真的新代码。通过应用域再分解来动态平衡每个分解域的计算量,使每个分解域的粒子数保持不变。在TSUBAME 2.5超级计算机的gpu上,采用两种不同的动态负载平衡技术:切片网格法和基于空间填充曲线的分层域分解法,验证了SPH仿真的性能可扩展性。使用512个gpu测量了使用1.11亿个粒子的测试用例的弱可伸缩性和强可伸缩性。与切片网格方法相比,在空间填充曲线的情况下,性能与gpu数量成比例地提高。随着gpu数量的增加,Hilbert曲线和Peano曲线表现出比Morton曲线更好的性能可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信