Weighted Local Directional Pattern for Robust Facial Expression Recognition

Arifur Rahman, L. Ali
{"title":"Weighted Local Directional Pattern for Robust Facial Expression Recognition","authors":"Arifur Rahman, L. Ali","doi":"10.1109/ICI.2011.51","DOIUrl":null,"url":null,"abstract":"A novel low-cost highly discriminatory feature space is introduced for facial expression recognition, which incorporates a weight to the Local Direction Pattern (LDP), capable of robust performance over a range of image resolutions. In addition, we use Adaboost to pick a small set of high-flying features, which are used by the Support Vector Machine (SVM) to classify facial expressions proficiently. Experimental results show that the proposed technique improves both the accuracy and the speed of the final classifier compares to other existing state-of-the-art methods.","PeriodicalId":146712,"journal":{"name":"2011 First International Conference on Informatics and Computational Intelligence","volume":"65 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 First International Conference on Informatics and Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICI.2011.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A novel low-cost highly discriminatory feature space is introduced for facial expression recognition, which incorporates a weight to the Local Direction Pattern (LDP), capable of robust performance over a range of image resolutions. In addition, we use Adaboost to pick a small set of high-flying features, which are used by the Support Vector Machine (SVM) to classify facial expressions proficiently. Experimental results show that the proposed technique improves both the accuracy and the speed of the final classifier compares to other existing state-of-the-art methods.
基于加权局部方向模式的鲁棒面部表情识别
引入了一种新的低成本、高分辨特征空间用于面部表情识别,该特征空间结合了局部方向模式(LDP)的权重,能够在各种图像分辨率范围内保持稳健的性能。此外,我们使用Adaboost选择了一小组高飞行特征,这些特征被支持向量机(SVM)用于熟练地分类面部表情。实验结果表明,与现有的分类器分类方法相比,该方法提高了最终分类器的准确率和速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信