{"title":"Parallel Branch-and-Bound using private IVM-based work stealing on Xeon Phi MIC coprocessor","authors":"N. Melab, Rudi Leroy, M. Mezmaz, D. Tuyttens","doi":"10.1109/HPCSim.2015.7237067","DOIUrl":null,"url":null,"abstract":"Many combinatorial optimization problems are modeled in practice as permutation-based ones. We have recently proposed a new data structure called IVM dedicated to those problems. IVM is memory efficient in terms of size and management time for solving large permutation problems using Branch-and-Bound (B&B) algorithm. We believe that those memory properties make IVM well-suited for Many Integrated Cores (MIC) architecture. This paper deals with the parallel design and implementation of the B&B algorithm on MIC architectures using private IVM-based work stealing. The proposed approach has been extensively experimented on an Intel Xeon Phi 5110P using several instances of the Flow-Shop scheduling permutation problem. The reported results show that the IVM-based work stealing approach is about 10 times faster than the linked-list traditionally used for parallel B&B.","PeriodicalId":134009,"journal":{"name":"2015 International Conference on High Performance Computing & Simulation (HPCS)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSim.2015.7237067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Many combinatorial optimization problems are modeled in practice as permutation-based ones. We have recently proposed a new data structure called IVM dedicated to those problems. IVM is memory efficient in terms of size and management time for solving large permutation problems using Branch-and-Bound (B&B) algorithm. We believe that those memory properties make IVM well-suited for Many Integrated Cores (MIC) architecture. This paper deals with the parallel design and implementation of the B&B algorithm on MIC architectures using private IVM-based work stealing. The proposed approach has been extensively experimented on an Intel Xeon Phi 5110P using several instances of the Flow-Shop scheduling permutation problem. The reported results show that the IVM-based work stealing approach is about 10 times faster than the linked-list traditionally used for parallel B&B.