Dynamic Approximation with Feedback Control for Energy-Efficient Recurrent Neural Network Hardware

J. Kung, Duckhwan Kim, S. Mukhopadhyay
{"title":"Dynamic Approximation with Feedback Control for Energy-Efficient Recurrent Neural Network Hardware","authors":"J. Kung, Duckhwan Kim, S. Mukhopadhyay","doi":"10.1145/2934583.2934626","DOIUrl":null,"url":null,"abstract":"This paper presents methodology of feedback-controlled dynamic approximation to enable energy-accuracy trade-off in digital recurrent neural network (RNN). A low-power digital RNN engine is presented that employs the proposed dynamic approximation. The on-chip feedback controller is realized by utilizing hysteretic or proportional controller. The dynamic adaptation of bit-precisions during the RNN computation is selected as approximation approach. Considering various applications, the digital RNN engine designed in 28nm CMOS shows ~36% average energy saving compared to the baseline case, with only ~4% of accuracy degradation on average.","PeriodicalId":142716,"journal":{"name":"Proceedings of the 2016 International Symposium on Low Power Electronics and Design","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2934583.2934626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper presents methodology of feedback-controlled dynamic approximation to enable energy-accuracy trade-off in digital recurrent neural network (RNN). A low-power digital RNN engine is presented that employs the proposed dynamic approximation. The on-chip feedback controller is realized by utilizing hysteretic or proportional controller. The dynamic adaptation of bit-precisions during the RNN computation is selected as approximation approach. Considering various applications, the digital RNN engine designed in 28nm CMOS shows ~36% average energy saving compared to the baseline case, with only ~4% of accuracy degradation on average.
基于反馈控制的节能递归神经网络硬件动态逼近
提出了一种反馈控制的动态逼近方法,使数字递归神经网络(RNN)的能量-精度折衷成为可能。提出了一种采用动态逼近的低功耗数字RNN引擎。片上反馈控制器采用滞回或比例控制器实现。选择RNN计算过程中位精度的动态自适应作为逼近方法。考虑到各种应用,在28nm CMOS中设计的数字RNN引擎与基准情况相比平均节能约36%,平均精度仅下降约4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信