{"title":"Dynamic Approximation with Feedback Control for Energy-Efficient Recurrent Neural Network Hardware","authors":"J. Kung, Duckhwan Kim, S. Mukhopadhyay","doi":"10.1145/2934583.2934626","DOIUrl":null,"url":null,"abstract":"This paper presents methodology of feedback-controlled dynamic approximation to enable energy-accuracy trade-off in digital recurrent neural network (RNN). A low-power digital RNN engine is presented that employs the proposed dynamic approximation. The on-chip feedback controller is realized by utilizing hysteretic or proportional controller. The dynamic adaptation of bit-precisions during the RNN computation is selected as approximation approach. Considering various applications, the digital RNN engine designed in 28nm CMOS shows ~36% average energy saving compared to the baseline case, with only ~4% of accuracy degradation on average.","PeriodicalId":142716,"journal":{"name":"Proceedings of the 2016 International Symposium on Low Power Electronics and Design","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2934583.2934626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
This paper presents methodology of feedback-controlled dynamic approximation to enable energy-accuracy trade-off in digital recurrent neural network (RNN). A low-power digital RNN engine is presented that employs the proposed dynamic approximation. The on-chip feedback controller is realized by utilizing hysteretic or proportional controller. The dynamic adaptation of bit-precisions during the RNN computation is selected as approximation approach. Considering various applications, the digital RNN engine designed in 28nm CMOS shows ~36% average energy saving compared to the baseline case, with only ~4% of accuracy degradation on average.