Deep Learning with hyper-parameter tuning for COVID-19 Cough Detection

Sunil Rao, V. Narayanaswamy, Michael Esposito, Jayaraman J. Thiagarajan, A. Spanias
{"title":"Deep Learning with hyper-parameter tuning for COVID-19 Cough Detection","authors":"Sunil Rao, V. Narayanaswamy, Michael Esposito, Jayaraman J. Thiagarajan, A. Spanias","doi":"10.1109/IISA52424.2021.9555564","DOIUrl":null,"url":null,"abstract":"As the COVID-19 pandemic continues, rapid non-invasive testing has become essential. Recent studies and benchmarks motivates the use of modern artificial intelligence (AI) tools that utilize audio waveform spectral features of coughing for COVID-19 diagnosis. In this paper, we describe the system we developed for COVID-19 cough detection. We utilize features directly extracted from the coughing audio and use deep learning algorithms to develop automated diagnostic tools for COVID-19. In particular, we develop a unique modification of the VGG13 deep learning architecture for audio analysis that uses log-mel spectrograms and a combination of binary cross entropy and focal losses. This unique modification enabled the model to achieve highly robust classification of the DiCOVA 2021 COVID-19 data. We also explore the use of data augmentation and an ensembling strategy to further improve the performance on the validation and the blind test datasets. Our model achieved an average validation AUROC of 82.23% and a test AUROC of 78.3% at a sensitivity of 80.49%.","PeriodicalId":437496,"journal":{"name":"2021 12th International Conference on Information, Intelligence, Systems & Applications (IISA)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Conference on Information, Intelligence, Systems & Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA52424.2021.9555564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

As the COVID-19 pandemic continues, rapid non-invasive testing has become essential. Recent studies and benchmarks motivates the use of modern artificial intelligence (AI) tools that utilize audio waveform spectral features of coughing for COVID-19 diagnosis. In this paper, we describe the system we developed for COVID-19 cough detection. We utilize features directly extracted from the coughing audio and use deep learning algorithms to develop automated diagnostic tools for COVID-19. In particular, we develop a unique modification of the VGG13 deep learning architecture for audio analysis that uses log-mel spectrograms and a combination of binary cross entropy and focal losses. This unique modification enabled the model to achieve highly robust classification of the DiCOVA 2021 COVID-19 data. We also explore the use of data augmentation and an ensembling strategy to further improve the performance on the validation and the blind test datasets. Our model achieved an average validation AUROC of 82.23% and a test AUROC of 78.3% at a sensitivity of 80.49%.
基于超参数调优的深度学习新冠肺炎咳嗽检测
随着COVID-19大流行的持续,快速非侵入性检测变得至关重要。最近的研究和基准促使人们使用现代人工智能(AI)工具,利用咳嗽的音频波形频谱特征进行COVID-19诊断。本文介绍了我们开发的COVID-19咳嗽检测系统。我们利用直接从咳嗽音频中提取的特征,并使用深度学习算法开发COVID-19的自动诊断工具。特别是,我们开发了一种独特的VGG13深度学习架构的修改,用于音频分析,使用对数谱图和二元交叉熵和焦点损失的组合。这种独特的修改使该模型能够对DiCOVA 2021 COVID-19数据实现高度稳健的分类。我们还探索了数据增强和集成策略的使用,以进一步提高验证和盲测数据集的性能。该模型的平均验证AUROC为82.23%,测试AUROC为78.3%,灵敏度为80.49%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信