Asymptotically optimal function estimation by minimum complexity criteria

A. Barron, Yuhong Yang, Bin Yu
{"title":"Asymptotically optimal function estimation by minimum complexity criteria","authors":"A. Barron, Yuhong Yang, Bin Yu","doi":"10.1109/ISIT.1994.394933","DOIUrl":null,"url":null,"abstract":"The minimum description length principle applied to function estimation can yield a criterion of the form log(likelihood)+const/spl middot/m instead of the familiar log(likelihood)+(m/2) log n where m is the number of parameters and n is the sample size. The improved criterion yields minimax optimal rates for redundancy and statistical risk. The analysis suggests an information-theoretic reconciliation of criteria proposed by Rissanen (1983), Schwarz (1978), and Akaike (1973).<<ETX>>","PeriodicalId":331390,"journal":{"name":"Proceedings of 1994 IEEE International Symposium on Information Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1994.394933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

The minimum description length principle applied to function estimation can yield a criterion of the form log(likelihood)+const/spl middot/m instead of the familiar log(likelihood)+(m/2) log n where m is the number of parameters and n is the sample size. The improved criterion yields minimax optimal rates for redundancy and statistical risk. The analysis suggests an information-theoretic reconciliation of criteria proposed by Rissanen (1983), Schwarz (1978), and Akaike (1973).<>
基于最小复杂度准则的渐近最优函数估计
应用于函数估计的最小描述长度原则可以产生log(likelihood)+const/spl middot/m形式的标准,而不是熟悉的log(likelihood)+(m/2) log n,其中m是参数的数量,n是样本量。改进的准则对冗余和统计风险产生最小、最大的最优率。分析表明,Rissanen(1983)、Schwarz(1978)和Akaike(1973)提出的标准在信息论上是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信