GEDS: GPU Execution of Continuous Queries on Spatio-Temporal Data Streams

Jonathan M. Cazalas, R. Guha
{"title":"GEDS: GPU Execution of Continuous Queries on Spatio-Temporal Data Streams","authors":"Jonathan M. Cazalas, R. Guha","doi":"10.1109/EUC.2010.26","DOIUrl":null,"url":null,"abstract":"Much research exists for the efficient processing of spatio-temporal data streams. However, all methods ultimately rely on an ill-equipped processor [22], namely a CPU, to evaluate concurrent, continuous spatio-temporal queries over these data streams. This paper presents GEDS, a scalable, Graphics Processing Unit (GPU)-based framework for the evaluation of continuous spatio-temporal queries over spatio-temporal data streams. GEDS employs the computation sharing and parallel processing paradigms to deliver scalability in the evaluation of continuous spatio-temporal queries. The GEDS framework utilizes the parallel processing capability of the GPU, a stream processor by trade, to handle the computation required in this application. Experimental evaluation shows promising performance and shows the scalability and efficacy of GEDS in spatio-temporal data streaming environments.","PeriodicalId":265175,"journal":{"name":"2010 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing","volume":"482 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUC.2010.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Much research exists for the efficient processing of spatio-temporal data streams. However, all methods ultimately rely on an ill-equipped processor [22], namely a CPU, to evaluate concurrent, continuous spatio-temporal queries over these data streams. This paper presents GEDS, a scalable, Graphics Processing Unit (GPU)-based framework for the evaluation of continuous spatio-temporal queries over spatio-temporal data streams. GEDS employs the computation sharing and parallel processing paradigms to deliver scalability in the evaluation of continuous spatio-temporal queries. The GEDS framework utilizes the parallel processing capability of the GPU, a stream processor by trade, to handle the computation required in this application. Experimental evaluation shows promising performance and shows the scalability and efficacy of GEDS in spatio-temporal data streaming environments.
在时空数据流上连续查询的GPU执行
针对时空数据流的高效处理,已有大量的研究。然而,所有的方法最终都依赖于一个装备不良的处理器[22],即CPU,来评估这些数据流上并发的、连续的时空查询。本文介绍了GEDS,一个可扩展的,基于图形处理单元(GPU)的框架,用于评估对时空数据流的连续时空查询。GEDS采用计算共享和并行处理的模式,在连续时空查询的评估中提供可扩展性。GEDS框架利用GPU的并行处理能力来处理该应用程序所需的计算。实验结果表明,该方法具有良好的性能,并显示了该方法在时空数据流环境下的可扩展性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信