Integrated Compressed Sensing and YOLOv4 for Application in Image-storage and Object-recognition of Dashboard Camera

Jim-Wei Wu, Cheng-Chia Wu, Wen-Shan Cen, Shao-An Chao, Jui-Tse Weng
{"title":"Integrated Compressed Sensing and YOLOv4 for Application in Image-storage and Object-recognition of Dashboard Camera","authors":"Jim-Wei Wu, Cheng-Chia Wu, Wen-Shan Cen, Shao-An Chao, Jui-Tse Weng","doi":"10.1109/anzcc53563.2021.9628221","DOIUrl":null,"url":null,"abstract":"This paper focuses on the research of the dashboard camera for improving the storage space and object recognition. The experiments showed that the CS method of ISTA-Net (Iterative Shrinkage Thresholding Algorithm with Network) can reduce the storage space by at least 60% and without obviously sacrificing the image quality. Furthermore, the recognition method by YOLOv4 can overcome the variety of environments, which can reach the recognition ratio of over 80% in a small 480x480 pixels. The recognition function can help to quickly catch the key features (ex: car, traffic signal, pedestrian, etc.) in the storage data of the dashboard camera.","PeriodicalId":246687,"journal":{"name":"2021 Australian & New Zealand Control Conference (ANZCC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/anzcc53563.2021.9628221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper focuses on the research of the dashboard camera for improving the storage space and object recognition. The experiments showed that the CS method of ISTA-Net (Iterative Shrinkage Thresholding Algorithm with Network) can reduce the storage space by at least 60% and without obviously sacrificing the image quality. Furthermore, the recognition method by YOLOv4 can overcome the variety of environments, which can reach the recognition ratio of over 80% in a small 480x480 pixels. The recognition function can help to quickly catch the key features (ex: car, traffic signal, pedestrian, etc.) in the storage data of the dashboard camera.
集成压缩感知和YOLOv4在仪表盘摄像头图像存储和目标识别中的应用
本文主要对车载摄像头进行研究,以提高存储空间和目标识别能力。实验表明,在不明显牺牲图像质量的情况下,sta - net(迭代收缩阈值算法with Network)的CS方法可以将存储空间减少至少60%。此外,YOLOv4的识别方法可以克服各种环境,在480 × 480像素的小范围内可以达到80%以上的识别率。识别功能可以帮助快速捕捉仪表盘摄像头存储数据中的关键特征(如:汽车、交通信号、行人等)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信