Fault Tolerance in Euclidean Committee Selection

Chinmay Sonar, S. Suri, J. Xue
{"title":"Fault Tolerance in Euclidean Committee Selection","authors":"Chinmay Sonar, S. Suri, J. Xue","doi":"10.48550/arXiv.2308.07268","DOIUrl":null,"url":null,"abstract":"In the committee selection problem, the goal is to choose a subset of size $k$ from a set of candidates $C$ that collectively gives the best representation to a set of voters. We consider this problem in Euclidean $d$-space where each voter/candidate is a point and voters' preferences are implicitly represented by Euclidean distances to candidates. We explore fault-tolerance in committee selection and study the following three variants: (1) given a committee and a set of $f$ failing candidates, find their optimal replacement; (2) compute the worst-case replacement score for a given committee under failure of $f$ candidates; and (3) design a committee with the best replacement score under worst-case failures. The score of a committee is determined using the well-known (min-max) Chamberlin-Courant rule: minimize the maximum distance between any voter and its closest candidate in the committee. Our main results include the following: (1) in one dimension, all three problems can be solved in polynomial time; (2) in dimension $d \\geq 2$, all three problems are NP-hard; and (3) all three problems admit a constant-factor approximation in any fixed dimension, and the optimal committee problem has an FPT bicriterion approximation.","PeriodicalId":201778,"journal":{"name":"Embedded Systems and Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2308.07268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the committee selection problem, the goal is to choose a subset of size $k$ from a set of candidates $C$ that collectively gives the best representation to a set of voters. We consider this problem in Euclidean $d$-space where each voter/candidate is a point and voters' preferences are implicitly represented by Euclidean distances to candidates. We explore fault-tolerance in committee selection and study the following three variants: (1) given a committee and a set of $f$ failing candidates, find their optimal replacement; (2) compute the worst-case replacement score for a given committee under failure of $f$ candidates; and (3) design a committee with the best replacement score under worst-case failures. The score of a committee is determined using the well-known (min-max) Chamberlin-Courant rule: minimize the maximum distance between any voter and its closest candidate in the committee. Our main results include the following: (1) in one dimension, all three problems can be solved in polynomial time; (2) in dimension $d \geq 2$, all three problems are NP-hard; and (3) all three problems admit a constant-factor approximation in any fixed dimension, and the optimal committee problem has an FPT bicriterion approximation.
欧几里得委员会选择中的容错
在委员会选择问题中,目标是从一组候选人$C$中选择一个大小为$k$的子集,这些候选人共同为一组选民提供了最佳代表。我们在欧几里得$d$空间中考虑这个问题,其中每个选民/候选人都是一个点,选民的偏好隐含地由到候选人的欧几里得距离表示。我们探讨了委员会选择中的容错问题,并研究了以下三种变体:(1)给定一个委员会和一组$f$不合格候选人,找到他们的最优替代;(2)在$f$候选人失败的情况下,计算给定委员会的最坏替换分数;(3)在最坏情况下设计一个替换分数最佳的委员会。委员会的得分是用著名的(最小-最大)钱伯林-柯朗规则确定的:最小化任何选民与委员会中最接近的候选人之间的最大距离。我们的主要结果包括:(1)在一维上,这三个问题都可以在多项式时间内解决;(2)在$d \geq 2$维度上,三个问题都是np困难问题;(3)这三个问题在任意固定维度上都是常因子逼近,最优委员会问题是FPT双准则逼近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信