Cycle GAN Based Heterogeneous Spatial-Spectral Fusion for Soil Moisture Downscaling

Menghui Jiang, Huanfeng Shen, Jie Li
{"title":"Cycle GAN Based Heterogeneous Spatial-Spectral Fusion for Soil Moisture Downscaling","authors":"Menghui Jiang, Huanfeng Shen, Jie Li","doi":"10.1109/IGARSS46834.2022.9884702","DOIUrl":null,"url":null,"abstract":"Soil moisture (SM) downscaling aims to solve the coarse resolution problem of passive microwave SM products. On the basis of SMAP SM products and related MODIS products, this study develops a deep residual cycle generative adversarial network (GAN) based heterogeneous spatial-spectral fusion method to downscale SMAP SM from 36km to 9km. On the one hand, the proposed method creatively regards the MODIS products that can reflect the SM state as the spectral features of SM in a broad sense and performs the heterogeneous spatial-spectral fusion between the low-resolution (LR) SM product and high-resolution (HR) MODIS products. On the other hand, considering the spatial correlation of SM, the proposed method utilizes a deep residual cycle generative adversarial network (GAN) to extract and fuse features of heterogeneous images through convolutions. Both qualitative and quantitative evaluation of experimental results shows that the proposed method can generate high accuracy SM products.","PeriodicalId":426003,"journal":{"name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS46834.2022.9884702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Soil moisture (SM) downscaling aims to solve the coarse resolution problem of passive microwave SM products. On the basis of SMAP SM products and related MODIS products, this study develops a deep residual cycle generative adversarial network (GAN) based heterogeneous spatial-spectral fusion method to downscale SMAP SM from 36km to 9km. On the one hand, the proposed method creatively regards the MODIS products that can reflect the SM state as the spectral features of SM in a broad sense and performs the heterogeneous spatial-spectral fusion between the low-resolution (LR) SM product and high-resolution (HR) MODIS products. On the other hand, considering the spatial correlation of SM, the proposed method utilizes a deep residual cycle generative adversarial network (GAN) to extract and fuse features of heterogeneous images through convolutions. Both qualitative and quantitative evaluation of experimental results shows that the proposed method can generate high accuracy SM products.
基于循环氮化镓的非均匀空间光谱融合土壤水分降尺度研究
土壤湿度降尺度的目的是解决无源微波土壤湿度产品的粗分辨率问题。在SMAP SM产品和相关MODIS产品的基础上,提出了一种基于深度残差循环生成对抗网络(GAN)的异构空间-光谱融合方法,将SMAP SM从36km降至9km。一方面,该方法创造性地将能够反映SM状态的MODIS产品作为广义SM的光谱特征,在低分辨率(LR) SM产品和高分辨率(HR) MODIS产品之间进行异构空间-光谱融合。另一方面,考虑到SM的空间相关性,该方法利用深度残差循环生成对抗网络(GAN)通过卷积提取和融合异构图像的特征。实验结果的定性和定量评价表明,该方法可以生成高精度的SM产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信