P. Richter, M. Palm, C. Weinzierl, H. Griesche, P. Rowe, J. Notholt
{"title":"A dataset of microphysical cloud parameters, retrieved from Emission-FTIR spectra measured in Arctic summer 2017","authors":"P. Richter, M. Palm, C. Weinzierl, H. Griesche, P. Rowe, J. Notholt","doi":"10.5194/essd-2021-284","DOIUrl":null,"url":null,"abstract":"Abstract. A dataset of microphysical cloud parameters from optically thin clouds, retrieved from infrared spectral radiances measured in summer 2017 in the Arctic, is presented. Measurements were conducted using a mobile Fourier-transform infrared (FTIR) spectrometer which was carried by the RV Polarstern. This dataset contains retrieved optical depths and effective radii of ice and water, from which the liquid water path and ice water path are calculated. These water paths and the effective radii are compared with derived quantities from a combined cloud radar, lidar and microwave radiometer measurement synergy retrieval, called Cloudnet. Comparing the liquid water paths from the infrared retrieval and Cloudnet shows significant correlations with a standard deviation of 8.60 g · m−2. Although liquid water path retrievals from microwave radiometer data come with a uncertainty of at least 20 g · m−2, a significant correlation and a standard deviation of 5.32 g · m−2 between the results of clouds with a liquid water path of at most 20 g · m−2 retrieved from infrared spectra and results from Cloudnet can be seen. Therefore, despite its large uncertainty, the comparison with data retrieved from infrared spectra shows that optically thin clouds of the measurement campaign in summer 2017 can be observed well using microwave radiometers within the Cloudnet framework. Apart from this, the dataset of microphysical cloud properties presented here allows to perform calculations of the cloud radiative effects, when the Cloudnet data from the campaign are not available, which was from the 22nd July 2017 until the 19th August 2017. The dataset is published at Pangaea (Richter et al., 2021).\n","PeriodicalId":326085,"journal":{"name":"Earth System Science Data Discussions","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/essd-2021-284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract. A dataset of microphysical cloud parameters from optically thin clouds, retrieved from infrared spectral radiances measured in summer 2017 in the Arctic, is presented. Measurements were conducted using a mobile Fourier-transform infrared (FTIR) spectrometer which was carried by the RV Polarstern. This dataset contains retrieved optical depths and effective radii of ice and water, from which the liquid water path and ice water path are calculated. These water paths and the effective radii are compared with derived quantities from a combined cloud radar, lidar and microwave radiometer measurement synergy retrieval, called Cloudnet. Comparing the liquid water paths from the infrared retrieval and Cloudnet shows significant correlations with a standard deviation of 8.60 g · m−2. Although liquid water path retrievals from microwave radiometer data come with a uncertainty of at least 20 g · m−2, a significant correlation and a standard deviation of 5.32 g · m−2 between the results of clouds with a liquid water path of at most 20 g · m−2 retrieved from infrared spectra and results from Cloudnet can be seen. Therefore, despite its large uncertainty, the comparison with data retrieved from infrared spectra shows that optically thin clouds of the measurement campaign in summer 2017 can be observed well using microwave radiometers within the Cloudnet framework. Apart from this, the dataset of microphysical cloud properties presented here allows to perform calculations of the cloud radiative effects, when the Cloudnet data from the campaign are not available, which was from the 22nd July 2017 until the 19th August 2017. The dataset is published at Pangaea (Richter et al., 2021).