{"title":"Correlation-based burstiness for logo retrieval","authors":"Jérôme Revaud, Matthijs Douze, C. Schmid","doi":"10.1145/2393347.2396358","DOIUrl":null,"url":null,"abstract":"Detecting logos in photos is challenging. A reason is that logos locally resemble patterns frequently seen in random images. We propose to learn a statistical model for the distribution of incorrect detections output by an image matching algorithm. It results in a novel scoring criterion in which the weight of correlated keypoint matches is reduced, penalizing irrelevant logo detections. In experiments on two very different logo retrieval benchmarks, our approach largely improves over the standard matching criterion as well as other state-of-the-art approaches.","PeriodicalId":212654,"journal":{"name":"Proceedings of the 20th ACM international conference on Multimedia","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2393347.2396358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83
Abstract
Detecting logos in photos is challenging. A reason is that logos locally resemble patterns frequently seen in random images. We propose to learn a statistical model for the distribution of incorrect detections output by an image matching algorithm. It results in a novel scoring criterion in which the weight of correlated keypoint matches is reduced, penalizing irrelevant logo detections. In experiments on two very different logo retrieval benchmarks, our approach largely improves over the standard matching criterion as well as other state-of-the-art approaches.