Correlation-based burstiness for logo retrieval

Jérôme Revaud, Matthijs Douze, C. Schmid
{"title":"Correlation-based burstiness for logo retrieval","authors":"Jérôme Revaud, Matthijs Douze, C. Schmid","doi":"10.1145/2393347.2396358","DOIUrl":null,"url":null,"abstract":"Detecting logos in photos is challenging. A reason is that logos locally resemble patterns frequently seen in random images. We propose to learn a statistical model for the distribution of incorrect detections output by an image matching algorithm. It results in a novel scoring criterion in which the weight of correlated keypoint matches is reduced, penalizing irrelevant logo detections. In experiments on two very different logo retrieval benchmarks, our approach largely improves over the standard matching criterion as well as other state-of-the-art approaches.","PeriodicalId":212654,"journal":{"name":"Proceedings of the 20th ACM international conference on Multimedia","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2393347.2396358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83

Abstract

Detecting logos in photos is challenging. A reason is that logos locally resemble patterns frequently seen in random images. We propose to learn a statistical model for the distribution of incorrect detections output by an image matching algorithm. It results in a novel scoring criterion in which the weight of correlated keypoint matches is reduced, penalizing irrelevant logo detections. In experiments on two very different logo retrieval benchmarks, our approach largely improves over the standard matching criterion as well as other state-of-the-art approaches.
基于关联的突发性标志检索
在照片中检测商标是一项挑战。原因之一是,徽标在局部与随机图像中常见的图案相似。我们提出通过图像匹配算法学习错误检测输出分布的统计模型。它产生了一种新的评分标准,其中减少了相关关键点匹配的权重,惩罚了不相关的标志检测。在两个非常不同的标志检索基准的实验中,我们的方法大大改进了标准匹配标准以及其他最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信