DeepRetino: Ophthalmic Disease Classification from Retinal Images using Deep Learning

Fatima Zahra Belharar, Nabila Zrira
{"title":"DeepRetino: Ophthalmic Disease Classification from Retinal Images using Deep Learning","authors":"Fatima Zahra Belharar, Nabila Zrira","doi":"10.1109/SETIT54465.2022.9875570","DOIUrl":null,"url":null,"abstract":"Eye diseases are one of the main causes of visual impairment. Their causes are various: they may be related to the aging process or originate from another pathology, such as complications of diabetes. Therefore, early diagnosis is highly recommended to prevent and control eye diseases. Previous approaches focused only on the detection of glaucoma, cataract or diabetic retinopathy. The main purpose of this article is to propose DeepRetino, an automatic multi-classification approach for six eye diseases based on advances in Deep Learning, in particular Convolutional Neural Networks (CNNs). In the preprocessing phase, we first focused on the histogram equalization method called Contrast Limited Adaptive Histogram Equalization (CLAHE) to improve the contrast of the fundus images. On the other hand, in the learning phase, we initialize and update the network weights using Xavier Orthogonal and Adam Optimizer. Finally, we evaluate DeepRetino on the Ocular Disease Intelligent Recognition (ODIR) dataset for deployment.","PeriodicalId":126155,"journal":{"name":"2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SETIT54465.2022.9875570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Eye diseases are one of the main causes of visual impairment. Their causes are various: they may be related to the aging process or originate from another pathology, such as complications of diabetes. Therefore, early diagnosis is highly recommended to prevent and control eye diseases. Previous approaches focused only on the detection of glaucoma, cataract or diabetic retinopathy. The main purpose of this article is to propose DeepRetino, an automatic multi-classification approach for six eye diseases based on advances in Deep Learning, in particular Convolutional Neural Networks (CNNs). In the preprocessing phase, we first focused on the histogram equalization method called Contrast Limited Adaptive Histogram Equalization (CLAHE) to improve the contrast of the fundus images. On the other hand, in the learning phase, we initialize and update the network weights using Xavier Orthogonal and Adam Optimizer. Finally, we evaluate DeepRetino on the Ocular Disease Intelligent Recognition (ODIR) dataset for deployment.
Deep pretino:使用深度学习从视网膜图像中分类眼部疾病
眼病是造成视力损害的主要原因之一。它们的原因是多种多样的:它们可能与衰老过程有关,也可能源于另一种病理,如糖尿病并发症。因此,强烈建议早期诊断,以预防和控制眼病。以前的方法只关注青光眼、白内障或糖尿病视网膜病变的检测。本文的主要目的是提出DeepRetino,这是一种基于深度学习,特别是卷积神经网络(cnn)进展的六种眼病自动多分类方法。在预处理阶段,我们首先重点研究了一种直方图均衡化方法,即对比度有限自适应直方图均衡化(CLAHE),以提高眼底图像的对比度。另一方面,在学习阶段,我们使用Xavier正交和Adam优化器初始化和更新网络权重。最后,我们在眼部疾病智能识别(ODIR)数据集上评估DeepRetino以进行部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信