{"title":"Time-space tradeoffs for branching programs","authors":"P. Beame, M. Saks, Jayram S. Thathachar","doi":"10.1109/SFCS.1998.743453","DOIUrl":null,"url":null,"abstract":"We obtain the first non-trivial time-space tradeoff lower bound for functions f: {0,1}/sup n//spl rarr/{0,1} on general branching programs by exhibiting a Boolean function f that requires exponential size to be computed by any branching program of length (1+/spl epsiv/)n, for some constant /spl epsiv/>0. We also give the first separation result between the syntactic and semantic read-k models for k>1 by showing that polynomial-size semantic read-twice branching programs can compute functions that require exponential size on any syntactic read-k branching program. We also show a time-space tradeoff result on the more general R-way branching program model: for any k, we give a function that requires exponential size to be computed by length kn q-way branching programs, for some q=q(k).","PeriodicalId":228145,"journal":{"name":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1998.743453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89
Abstract
We obtain the first non-trivial time-space tradeoff lower bound for functions f: {0,1}/sup n//spl rarr/{0,1} on general branching programs by exhibiting a Boolean function f that requires exponential size to be computed by any branching program of length (1+/spl epsiv/)n, for some constant /spl epsiv/>0. We also give the first separation result between the syntactic and semantic read-k models for k>1 by showing that polynomial-size semantic read-twice branching programs can compute functions that require exponential size on any syntactic read-k branching program. We also show a time-space tradeoff result on the more general R-way branching program model: for any k, we give a function that requires exponential size to be computed by length kn q-way branching programs, for some q=q(k).