CNN-SINDy Based Reduced Order Modeling of Unsteady Flow Fields

Takaaki Murata, Kai Fukami, K. Fukagata
{"title":"CNN-SINDy Based Reduced Order Modeling of Unsteady Flow Fields","authors":"Takaaki Murata, Kai Fukami, K. Fukagata","doi":"10.1115/ajkfluids2019-5056","DOIUrl":null,"url":null,"abstract":"\n We present a new framework of nonlinear reduced order model to extract low-dimensional modes and to predict their temporal evolutions. Autoencoder-type Convolutional Neural Network (CNN) which can learn nonlinearity of data is used to extract low-dimensional modes. For obtaining the temporal evolution of a mapped data by CNN, Sparse Identification of Nonlinear Dynamics (SINDy) is performed. The proposed method is applied to a circular cylinder wake at ReD = 100. The CNN trained using fluctuation components of velocity vector u, v shows better results than the snapshot Proper Orthogonal Decomposition in terms of the energy reconstruction rate. Although time-evolving flow fields reproduced by SINDy equation also show reasonable agreement with the reference direct numerical simulation, the errors of CNN and SINDy are accumulated through integral computation. The error of CNN can be reduced by devising a better network structure; however, the error of SINDy depends on the waveform of latent vector.","PeriodicalId":346736,"journal":{"name":"Volume 2: Computational Fluid Dynamics","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Computational Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-5056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new framework of nonlinear reduced order model to extract low-dimensional modes and to predict their temporal evolutions. Autoencoder-type Convolutional Neural Network (CNN) which can learn nonlinearity of data is used to extract low-dimensional modes. For obtaining the temporal evolution of a mapped data by CNN, Sparse Identification of Nonlinear Dynamics (SINDy) is performed. The proposed method is applied to a circular cylinder wake at ReD = 100. The CNN trained using fluctuation components of velocity vector u, v shows better results than the snapshot Proper Orthogonal Decomposition in terms of the energy reconstruction rate. Although time-evolving flow fields reproduced by SINDy equation also show reasonable agreement with the reference direct numerical simulation, the errors of CNN and SINDy are accumulated through integral computation. The error of CNN can be reduced by devising a better network structure; however, the error of SINDy depends on the waveform of latent vector.
基于CNN-SINDy的非定常流场降阶建模
提出了一种新的非线性降阶模型框架,用于提取低维模态并预测其时间演化。利用可学习数据非线性的自编码器型卷积神经网络(CNN)提取低维模式。为了通过CNN获得映射数据的时间演化,我们进行了非线性动力学的稀疏识别(SINDy)。将该方法应用于在ReD = 100处的圆柱尾迹。使用速度矢量u, v的波动分量训练的CNN在能量重构率上优于快照固有正交分解。虽然SINDy方程再现的时变流场也与参考直接数值模拟有一定的一致性,但CNN和SINDy的误差是通过积分计算积累起来的。通过设计更好的网络结构可以减小CNN的误差;然而,SINDy的误差取决于潜在向量的波形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信