Learning from negative example in relevance feedback for content-based image retrieval

M. L. Kherfi, D. Ziou, A. Bernardi
{"title":"Learning from negative example in relevance feedback for content-based image retrieval","authors":"M. L. Kherfi, D. Ziou, A. Bernardi","doi":"10.1109/ICPR.2002.1048458","DOIUrl":null,"url":null,"abstract":"In this paper, we address some issues related to the combination of positive and negative examples to perform more efficient image retrieval. We analyze the relevance of negative example and how it can be interpreted. Then we propose a new relevance feedback model that integrates both positive and negative examples. First, a query is formulated using positive example, then negative example is used to refine the system's response. Mathematically, relevance feedback is formulated as an optimization of intra and inter variances of positive and negative examples.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

In this paper, we address some issues related to the combination of positive and negative examples to perform more efficient image retrieval. We analyze the relevance of negative example and how it can be interpreted. Then we propose a new relevance feedback model that integrates both positive and negative examples. First, a query is formulated using positive example, then negative example is used to refine the system's response. Mathematically, relevance feedback is formulated as an optimization of intra and inter variances of positive and negative examples.
基于内容的图像检索中相关反馈的负例学习
在本文中,我们解决了一些与正样例和负样例相结合的问题,以执行更有效的图像检索。我们分析了负面例子的相关性以及它是如何被解释的。在此基础上,我们提出了一种新的正例与负例相结合的关联反馈模型。首先,使用正例来制定查询,然后使用负例来改进系统的响应。在数学上,相关反馈被表述为正例和负例的内方差和间方差的优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信