Quantitative Modeling of Polarization in Online Intelligent Argumentation and Deliberation for Capturing Collective Intelligence

J. Sirrianni, X. Liu, Douglas Adams
{"title":"Quantitative Modeling of Polarization in Online Intelligent Argumentation and Deliberation for Capturing Collective Intelligence","authors":"J. Sirrianni, X. Liu, Douglas Adams","doi":"10.1109/ICCC.2018.00015","DOIUrl":null,"url":null,"abstract":"Massive online argumentation deliberation has the potential to capture collective intelligence and crowd wisdom. However, certain observable phenomena, such as polarization, often emerge in online argumentation and deliberation, preventing constructive discourse. Accurately detecting the presence and intensity of polarization is important to determining if collective intelligence and crowd wisdom can be captured from online deliberation. In this paper, an innovative method of measuring polarization quantitatively in online argumentation is presented. Important polarization attributes such as homogeneity in groups, heterogeneity across groups, the number of poles, and the size of poles are identified to measure polarization in online argumentation. This new method uses our argumentation tool, Intelligent Cyber Argumentation System's (ICAS) cognitive computing component, a fuzzy logic engine, to derive the participant's agreement distribution. Then we apply an income polarization measurement from the field of economics [7] that we have modified and expanded for argumentation, on the agreement distribution to produce a polarization index value. We discuss why our method to measure argumentation polarization is a significant improvement over existing measurements for online argumentation polarization in terms of these identified attributes. We conducted empirical studies using ICAS that demonstrate that our method outperforms others that exist on our empirical data.","PeriodicalId":306012,"journal":{"name":"2018 IEEE International Conference on Cognitive Computing (ICCC)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Cognitive Computing (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC.2018.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Massive online argumentation deliberation has the potential to capture collective intelligence and crowd wisdom. However, certain observable phenomena, such as polarization, often emerge in online argumentation and deliberation, preventing constructive discourse. Accurately detecting the presence and intensity of polarization is important to determining if collective intelligence and crowd wisdom can be captured from online deliberation. In this paper, an innovative method of measuring polarization quantitatively in online argumentation is presented. Important polarization attributes such as homogeneity in groups, heterogeneity across groups, the number of poles, and the size of poles are identified to measure polarization in online argumentation. This new method uses our argumentation tool, Intelligent Cyber Argumentation System's (ICAS) cognitive computing component, a fuzzy logic engine, to derive the participant's agreement distribution. Then we apply an income polarization measurement from the field of economics [7] that we have modified and expanded for argumentation, on the agreement distribution to produce a polarization index value. We discuss why our method to measure argumentation polarization is a significant improvement over existing measurements for online argumentation polarization in terms of these identified attributes. We conducted empirical studies using ICAS that demonstrate that our method outperforms others that exist on our empirical data.
获取集体智慧的在线智能辩论与审议极化定量建模
大规模的网络辩论审议有可能捕捉集体智慧和群体智慧。然而,在网络辩论和讨论中,经常出现一些可观察到的现象,如两极分化,阻碍了建设性的话语。准确检测两极分化的存在和强度,对于确定能否从网络讨论中获取集体智慧和群体智慧非常重要。本文提出了一种在线辩论中定量测量极化的创新方法。识别重要的极化属性,如群体内的同质性、群体间的异质性、极性的数量和极性的大小,以衡量在线辩论中的极化。该方法利用我们的论证工具——智能网络论证系统(ICAS)的认知计算组件——一个模糊逻辑引擎,推导出参与者的协议分布。然后,我们将经济学领域的收入极化测量方法[7]应用于协议分布,并对其进行了修改和扩展以进行论证,以产生极化指标值。我们讨论了为什么我们测量辩论极化的方法在这些已识别的属性方面比现有的在线辩论极化测量方法有了显著的改进。我们使用ICAS进行了实证研究,证明我们的方法优于我们的经验数据上存在的其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信