V. Lacroix, P. Dulieu, Sébastien Blasset, Ralf Tiete, Yinsheng Li, K. Hasegawa, W. Bamford, A. Udyawar
{"title":"Rules for Flaw Interaction for Subsurface Flaws in Operating Pressurized Vessels: Technical Basis of Code Case N-877","authors":"V. Lacroix, P. Dulieu, Sébastien Blasset, Ralf Tiete, Yinsheng Li, K. Hasegawa, W. Bamford, A. Udyawar","doi":"10.1115/PVP2018-84120","DOIUrl":null,"url":null,"abstract":"When multiple flaws are detected in pressure retaining components during inspection, the first step of evaluation consists of determining whether the flaws shall be combined into a single flaw or evaluated separately. This combination process is carried out in compliance with proximity rules given in the Fitness-for-Service (FFS) Codes. However, the specific criteria for the rules on combining multiple flaws into a single flaw are different among the FFS Codes.\n In this context, revised and improved criteria have been developed, to more accurately characterize the interaction between multiple subsurface flaws in operating pressure vessels. This improved approach removes some of the conservatism in the existing ASME Code approach, which was developed in the 1970s based on two flaws interacting with each other.\n This paper explains in detail the methodology used to derive improved flaw proximity rules through three-dimensional FEM and XFEM analyses. After the presentation of the calculations results and the improved criteria, the paper also highlights the multiple conservatisms of the methodology using several sensitivity analyses.","PeriodicalId":128383,"journal":{"name":"Volume 1A: Codes and Standards","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1A: Codes and Standards","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-84120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
When multiple flaws are detected in pressure retaining components during inspection, the first step of evaluation consists of determining whether the flaws shall be combined into a single flaw or evaluated separately. This combination process is carried out in compliance with proximity rules given in the Fitness-for-Service (FFS) Codes. However, the specific criteria for the rules on combining multiple flaws into a single flaw are different among the FFS Codes.
In this context, revised and improved criteria have been developed, to more accurately characterize the interaction between multiple subsurface flaws in operating pressure vessels. This improved approach removes some of the conservatism in the existing ASME Code approach, which was developed in the 1970s based on two flaws interacting with each other.
This paper explains in detail the methodology used to derive improved flaw proximity rules through three-dimensional FEM and XFEM analyses. After the presentation of the calculations results and the improved criteria, the paper also highlights the multiple conservatisms of the methodology using several sensitivity analyses.