Graph-based simulated annealing and support vector machine in Malware detection

A. Sirageldin, A. Selamat, R. Ibrahim
{"title":"Graph-based simulated annealing and support vector machine in Malware detection","authors":"A. Sirageldin, A. Selamat, R. Ibrahim","doi":"10.1109/MYSEC.2011.6140720","DOIUrl":null,"url":null,"abstract":"As ongoing war between the malware developer and defense mechanism planners there is a great challenge in providing an effective defense mechanism against evasion technique used by malware authors. The present paper provides a framework for malware detection based on the analysis of graphs introduced from instructions of the executable objects. The graph is constructed through the graph extractor, and then we used the simulated annealing algorithm to approximate the graph similarity measure. The threshold value plays a great role to relate the support vector machine to confirm the real class of the file, benign or malicious.","PeriodicalId":137714,"journal":{"name":"2011 Malaysian Conference in Software Engineering","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Malaysian Conference in Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MYSEC.2011.6140720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

As ongoing war between the malware developer and defense mechanism planners there is a great challenge in providing an effective defense mechanism against evasion technique used by malware authors. The present paper provides a framework for malware detection based on the analysis of graphs introduced from instructions of the executable objects. The graph is constructed through the graph extractor, and then we used the simulated annealing algorithm to approximate the graph similarity measure. The threshold value plays a great role to relate the support vector machine to confirm the real class of the file, benign or malicious.
基于图的模拟退火和支持向量机在恶意软件检测中的应用
随着恶意软件开发人员和防御机制规划者之间的持续战争,提供有效的防御机制来防止恶意软件作者使用的逃避技术是一个巨大的挑战。本文提出了一种基于可执行对象指令图分析的恶意软件检测框架。通过图提取器构造图,然后使用模拟退火算法逼近图的相似度度量。阈值对支持向量机确定文件的真实类别、良性或恶意起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信