Vibration Analysis for Fault Detection of Wind Turbine: New Methodology of Supervised Machine Learning Techniques

Javier Vives
{"title":"Vibration Analysis for Fault Detection of Wind Turbine: New Methodology of Supervised Machine Learning Techniques","authors":"Javier Vives","doi":"10.20855/ijav.2022.27.21836","DOIUrl":null,"url":null,"abstract":"The implementation of supervised machine learning techniques classifiers is changing wind turbine maintenance. This automatic and autonomous learning methodology allows one to predict, detect, and anticipate the degeneration of any electrical and mechanical components present in a wind turbine. In this paper, two different failure states are simulated due to bearing vibrations, comparing frequency analysis and some machine learning classifiers. With the implementation of the KNN and SVM algorithms, we can evaluate different methodologies for supervision, monitoring, and fault diagnosis in a wind turbine. With the implementation of these techniques, it reduces downtime, anticipates potential breakdowns, and aspect import if they are offshore.","PeriodicalId":131358,"journal":{"name":"The International Journal of Acoustics and Vibration","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Acoustics and Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20855/ijav.2022.27.21836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The implementation of supervised machine learning techniques classifiers is changing wind turbine maintenance. This automatic and autonomous learning methodology allows one to predict, detect, and anticipate the degeneration of any electrical and mechanical components present in a wind turbine. In this paper, two different failure states are simulated due to bearing vibrations, comparing frequency analysis and some machine learning classifiers. With the implementation of the KNN and SVM algorithms, we can evaluate different methodologies for supervision, monitoring, and fault diagnosis in a wind turbine. With the implementation of these techniques, it reduces downtime, anticipates potential breakdowns, and aspect import if they are offshore.
风力发电机故障检测的振动分析:监督机器学习技术的新方法
有监督机器学习技术分类器的实施正在改变风力涡轮机的维护。这种自动和自主的学习方法允许人们预测、检测和预测风力涡轮机中存在的任何电气和机械部件的退化。本文模拟了轴承振动引起的两种不同的故障状态,比较了频率分析和一些机器学习分类器。通过KNN和SVM算法的实现,我们可以评估用于风力发电机组监督、监测和故障诊断的不同方法。通过这些技术的实现,可以减少停机时间,预测潜在的故障,以及在离岸情况下的方面导入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信