IDENTIFICATION OF THE LENGTH OF THE LONGITUDINAL NOTCH OF THE ROD BY THE NATURAL FREQUENCIES OF BENDING VIBRATIONS

И.М. Утяшев, Альфир Фатхелисламов
{"title":"IDENTIFICATION OF THE LENGTH OF THE LONGITUDINAL NOTCH OF THE ROD BY THE NATURAL FREQUENCIES OF BENDING VIBRATIONS","authors":"И.М. Утяшев, Альфир Фатхелисламов","doi":"10.36622/vstu.2022.90.4.004","DOIUrl":null,"url":null,"abstract":"Разработанный метод позволяет решить задачу идентификации геометрических параметров различных деталей и конструкций, моделируемых стержнями.\n Objectives of the work: to consider the direct and inverse problem of vibration of a rectangular rod with a longitudinal notch; to study the patterns of behavior of natural frequencies of bending vibrations when changing the location and size of the notch; to develop a method that makes it possible to uniquely identify the parameters of a longitudinal notch using the natural frequencies of the bending vibrations of the rod. A bar with a longitudinal notch is modeled as two bars, where the first one does not have a notch, and the second one does. For connection, conjugation conditions are used, in which bending vibrations and deformations are equated. The solution of the inverse problem is based on the construction of a frequency equation under the assumption that the desired parameters are included in the equation. By substituting natural frequencies into this equation, we obtain a nonlinear system with respect to unknown parameters. The solution of the latter is the desired notch parameters. Results. Tables of natural frequencies for different parameters of the notch start point are given. Graphs of dependence of natural frequencies on notch parameters are constructed. A method for identifying notch parameters by a finite number of natural frequencies is presented. It is shown that the inverse problem has an exact solution. For an unambiguous solution, one natural frequency is sufficient. The developed method allows to solve the problem of identification of geometric parameters of various parts and structures modeled by rods.","PeriodicalId":331043,"journal":{"name":"СИСТЕМЫ УПРАВЛЕНИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"СИСТЕМЫ УПРАВЛЕНИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36622/vstu.2022.90.4.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Разработанный метод позволяет решить задачу идентификации геометрических параметров различных деталей и конструкций, моделируемых стержнями. Objectives of the work: to consider the direct and inverse problem of vibration of a rectangular rod with a longitudinal notch; to study the patterns of behavior of natural frequencies of bending vibrations when changing the location and size of the notch; to develop a method that makes it possible to uniquely identify the parameters of a longitudinal notch using the natural frequencies of the bending vibrations of the rod. A bar with a longitudinal notch is modeled as two bars, where the first one does not have a notch, and the second one does. For connection, conjugation conditions are used, in which bending vibrations and deformations are equated. The solution of the inverse problem is based on the construction of a frequency equation under the assumption that the desired parameters are included in the equation. By substituting natural frequencies into this equation, we obtain a nonlinear system with respect to unknown parameters. The solution of the latter is the desired notch parameters. Results. Tables of natural frequencies for different parameters of the notch start point are given. Graphs of dependence of natural frequencies on notch parameters are constructed. A method for identifying notch parameters by a finite number of natural frequencies is presented. It is shown that the inverse problem has an exact solution. For an unambiguous solution, one natural frequency is sufficient. The developed method allows to solve the problem of identification of geometric parameters of various parts and structures modeled by rods.
通过弯曲振动的固有频率来确定杆的纵向缺口长度
Разработанныйметодпозволяетрешитьзадачуидентификациигеометрическихпараметровразличныхдеталейиконструкций,моделируемыхстержнями。工作目的:考虑带纵向缺口的矩形杆的振动正逆问题;研究改变缺口位置和尺寸时弯曲振动固有频率的行为模式;开发一种方法,可以利用杆的弯曲振动的固有频率来唯一地识别纵向缺口的参数。将具有纵向缺口的棒材建模为两根棒材,其中第一根棒材没有缺口,第二根棒材有缺口。对于连接,使用共轭条件,其中弯曲振动和变形是相等的。反问题的解是在假设所需参数包含在方程中的前提下,建立频率方程。通过将固有频率代入方程,我们得到了一个关于未知参数的非线性系统。后者的解就是所需的陷波参数。结果。给出了陷波起始点不同参数下的固有频率表。构造了固有频率与陷波参数的关系图。提出了一种用有限个固有频率识别陷波参数的方法。证明了反问题有一个精确解。对于一个明确的解,一个固有频率就足够了。所开发的方法可以解决用杆建模的各种零件和结构的几何参数识别问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信