RecVAE: A New Variational Autoencoder for Top-N Recommendations with Implicit Feedback

Ilya Shenbin, Anton M. Alekseev, E. Tutubalina, Valentin Malykh, S. Nikolenko
{"title":"RecVAE: A New Variational Autoencoder for Top-N Recommendations with Implicit Feedback","authors":"Ilya Shenbin, Anton M. Alekseev, E. Tutubalina, Valentin Malykh, S. Nikolenko","doi":"10.1145/3336191.3371831","DOIUrl":null,"url":null,"abstract":"Recent research has shown the advantages of using autoencoders based on deep neural networks for collaborative filtering. In particular, the recently proposed Mult-VAE model, which used the multinomial likelihood variational autoencoders, has shown excellent results for top-N recommendations. In this work, we propose the Recommender VAE (RecVAE) model that originates from our research on regularization techniques for variational autoencoders. RecVAE introduces several novel ideas to improve Mult-VAE, including a novel composite prior distribution for the latent codes, a new approach to setting the beta hyperparameter for the beta-VAE framework, and a new approach to training based on alternating updates. In experimental evaluation, we show that RecVAE significantly outperforms previously proposed autoencoder-based models, including Mult-VAE and RaCT, across classical collaborative filtering datasets, and present a detailed ablation study to assess our new developments. Code and models are available at https://github.com/ilya-shenbin/RecVAE.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"126","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 126

Abstract

Recent research has shown the advantages of using autoencoders based on deep neural networks for collaborative filtering. In particular, the recently proposed Mult-VAE model, which used the multinomial likelihood variational autoencoders, has shown excellent results for top-N recommendations. In this work, we propose the Recommender VAE (RecVAE) model that originates from our research on regularization techniques for variational autoencoders. RecVAE introduces several novel ideas to improve Mult-VAE, including a novel composite prior distribution for the latent codes, a new approach to setting the beta hyperparameter for the beta-VAE framework, and a new approach to training based on alternating updates. In experimental evaluation, we show that RecVAE significantly outperforms previously proposed autoencoder-based models, including Mult-VAE and RaCT, across classical collaborative filtering datasets, and present a detailed ablation study to assess our new developments. Code and models are available at https://github.com/ilya-shenbin/RecVAE.
RecVAE:一种新的带有隐式反馈的Top-N推荐变分自编码器
近年来的研究表明,使用基于深度神经网络的自编码器进行协同滤波具有一定的优势。特别是,最近提出的使用多项似然变分自编码器的multi - vae模型,在top-N推荐中显示了出色的结果。在这项工作中,我们提出了推荐VAE (RecVAE)模型,该模型起源于我们对变分自编码器正则化技术的研究。RecVAE引入了一些新的思想来改进multi - vae,包括一种新的潜在码的复合先验分布,一种为beta- vae框架设置beta超参数的新方法,以及一种基于交替更新的新训练方法。在实验评估中,我们表明RecVAE在经典协同过滤数据集上显著优于先前提出的基于自编码器的模型,包括multi - vae和RaCT,并提出了详细的烧蚀研究来评估我们的新发展。代码和模型可在https://github.com/ilya-shenbin/RecVAE上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信