Optimization with genetic algorithms in multispecies environments

L. Schmitt
{"title":"Optimization with genetic algorithms in multispecies environments","authors":"L. Schmitt","doi":"10.1109/ICCIMA.2003.1238124","DOIUrl":null,"url":null,"abstract":"We discuss a converging 'scaled coevolutionary genetic algorithm' (scGA) in a setting where populations contain fixed numbers of interacting creatures of several types. The interaction defines a population-dependent fitness function. The scGA employs multiple-spot mutation, various crossover operators and power-law scaled proportional fitness selection. In particular, the Vose-Liepins version of mutation-crossover is included. To achieve convergence, the mutation and crossover rates have to be annealed to zero in proper fashion, and power-law scaling is used with logarithmic growth in the exponent. If creatures of specific types exist that have maximal fitness in every population they reside in, then the scGA described here converges asymptotically to a probability distribution over multiuniform populations containing only such maximal creatures wherever they exist.","PeriodicalId":385362,"journal":{"name":"Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIMA.2003.1238124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We discuss a converging 'scaled coevolutionary genetic algorithm' (scGA) in a setting where populations contain fixed numbers of interacting creatures of several types. The interaction defines a population-dependent fitness function. The scGA employs multiple-spot mutation, various crossover operators and power-law scaled proportional fitness selection. In particular, the Vose-Liepins version of mutation-crossover is included. To achieve convergence, the mutation and crossover rates have to be annealed to zero in proper fashion, and power-law scaling is used with logarithmic growth in the exponent. If creatures of specific types exist that have maximal fitness in every population they reside in, then the scGA described here converges asymptotically to a probability distribution over multiuniform populations containing only such maximal creatures wherever they exist.
多物种环境下遗传算法优化
我们讨论了一种收敛的“尺度协同进化遗传算法”(scGA),该算法在种群中包含固定数量的几种类型的相互作用生物。这种相互作用定义了种群相关的适应度函数。该算法采用多点突变、多种交叉算子和幂律比例适应度选择。特别地,包含了Vose-Liepins版本的突变-交叉。为了实现收敛,突变和交叉率必须以适当的方式退火为零,幂律缩放与指数的对数增长一起使用。如果特定类型的生物在它们所居住的每个种群中都有最大的适应度,那么这里描述的scGA就会渐近地收敛于只包含这种最大生物的多均匀种群的概率分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信