Sparse Detection for Spatial Modulation in Multiple Access Channels

Yuliang Tu, Lin Gui, Qibo Qin, H. Wen
{"title":"Sparse Detection for Spatial Modulation in Multiple Access Channels","authors":"Yuliang Tu, Lin Gui, Qibo Qin, H. Wen","doi":"10.1109/ISCC.2018.8538700","DOIUrl":null,"url":null,"abstract":"In this paper, a low-complexity detector based on the multi-user sparse Bayesian learning (MSBL) method is proposed for the multi-user spatial modulation (SM) multiple-input-multiple-output (MIMO) system. Firstly, we formulate the multiple access channel SM (MAC-SM) detection as a sparse recovery problem with fixed sparsity constraint. Then, by exploiting the characteristic of the SM transmit signal, we coarsely detect all the potential positions of active antennas. Finally, we select the maximum likely set of the index of active antennas from all user and utilize the zeros-forcing (ZF) estimate to recover the modulation signals. In addition, we theoretically analyze the complexity of proposed algorithm. Experiment and simulation results demonstrate that the proposed detector achieves a good tradeoff between performance and computational complexity.","PeriodicalId":233592,"journal":{"name":"2018 IEEE Symposium on Computers and Communications (ISCC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC.2018.8538700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a low-complexity detector based on the multi-user sparse Bayesian learning (MSBL) method is proposed for the multi-user spatial modulation (SM) multiple-input-multiple-output (MIMO) system. Firstly, we formulate the multiple access channel SM (MAC-SM) detection as a sparse recovery problem with fixed sparsity constraint. Then, by exploiting the characteristic of the SM transmit signal, we coarsely detect all the potential positions of active antennas. Finally, we select the maximum likely set of the index of active antennas from all user and utilize the zeros-forcing (ZF) estimate to recover the modulation signals. In addition, we theoretically analyze the complexity of proposed algorithm. Experiment and simulation results demonstrate that the proposed detector achieves a good tradeoff between performance and computational complexity.
多址信道中空间调制的稀疏检测
针对多用户空间调制(SM)多输入多输出(MIMO)系统,提出了一种基于多用户稀疏贝叶斯学习(MSBL)方法的低复杂度检测器。首先,我们将多址信道SM (MAC-SM)检测表述为具有固定稀疏性约束的稀疏恢复问题。然后,利用SM发射信号的特性,粗略地检测出有源天线的所有潜在位置。最后,我们从所有用户中选择有源天线指标的最大似然集,并利用零强迫(ZF)估计来恢复调制信号。此外,从理论上分析了算法的复杂度。实验和仿真结果表明,该检测器在性能和计算复杂度之间取得了很好的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信