Pengfei Dou, Lingfeng Zhang, Yuhang Wu, S. Shah, I. Kakadiaris
{"title":"Pose-robust face signature for multi-view face recognition","authors":"Pengfei Dou, Lingfeng Zhang, Yuhang Wu, S. Shah, I. Kakadiaris","doi":"10.1109/BTAS.2015.7358788","DOIUrl":null,"url":null,"abstract":"Despite the great progress achieved in unconstrained face recognition, pose variations still remain a challenging and unsolved practical issue. We propose a novel framework for multi-view face recognition based on extracting and matching pose-robust face signatures from 2D images. Specifically, we propose an efficient method for monocular 3D face reconstruction, which is used to lift the 2D facial appearance to a canonical texture space and estimate the self-occlusion. On the lifted facial texture we then extract various local features, which are further enhanced by the occlusion encodings computed on the self-occlusion mask, resulting in a pose-robust face signature, a novel feature representation of the original 2D facial image. Extensive experiments on two public datasets demonstrate that our method not only simplifies the matching of multi-view 2D facial images by circumventing the requirement for pose-adaptive classifiers, but also achieves superior performance.","PeriodicalId":404972,"journal":{"name":"2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS)","volume":"400 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2015.7358788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
Despite the great progress achieved in unconstrained face recognition, pose variations still remain a challenging and unsolved practical issue. We propose a novel framework for multi-view face recognition based on extracting and matching pose-robust face signatures from 2D images. Specifically, we propose an efficient method for monocular 3D face reconstruction, which is used to lift the 2D facial appearance to a canonical texture space and estimate the self-occlusion. On the lifted facial texture we then extract various local features, which are further enhanced by the occlusion encodings computed on the self-occlusion mask, resulting in a pose-robust face signature, a novel feature representation of the original 2D facial image. Extensive experiments on two public datasets demonstrate that our method not only simplifies the matching of multi-view 2D facial images by circumventing the requirement for pose-adaptive classifiers, but also achieves superior performance.