{"title":"Image Approach to Speech Recognition on CNN","authors":"M. Musaev, Ilyos Khujayorov, M. Ochilov","doi":"10.1145/3386164.3389100","DOIUrl":null,"url":null,"abstract":"In this paper has been discussed about speech recognition using spectrogram images and deep convolution neural network(CNN) of Uzbek spoken digits. Spectrogram images from speech signal were generated and it were used for deep CNN training. Presented CNN model contains 3 convolution layers and 2 fully connected layers that discriminative features can be divided and estimated of spectrogram images by those layers. In current research period, dataset of Uzbek spoken digits were made and in based on presented CNN model they were trained. Testing results shows that, proposed approach for Uzbek spoken digits classified 100% accuracy.","PeriodicalId":231209,"journal":{"name":"Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386164.3389100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
In this paper has been discussed about speech recognition using spectrogram images and deep convolution neural network(CNN) of Uzbek spoken digits. Spectrogram images from speech signal were generated and it were used for deep CNN training. Presented CNN model contains 3 convolution layers and 2 fully connected layers that discriminative features can be divided and estimated of spectrogram images by those layers. In current research period, dataset of Uzbek spoken digits were made and in based on presented CNN model they were trained. Testing results shows that, proposed approach for Uzbek spoken digits classified 100% accuracy.