Epidemic Analysis of COVID-19 in Italy by Dynamical Modelling

L. Mangoni, Marc J. Pistilli
{"title":"Epidemic Analysis of COVID-19 in Italy by Dynamical Modelling","authors":"L. Mangoni, Marc J. Pistilli","doi":"10.2139/ssrn.3567770","DOIUrl":null,"url":null,"abstract":"Epidemic analysis by dynamical modelling is a reliable and insightful way to analyse epidemiological data in order to extract key indicators about the outbreak and to make predictions on its future course. We develop a generalised SEIR model based on Peng et al. 2020 and estimate it on a national and regional level against the data published daily by the Italian Dipartimento della Protezione Civile. We find the inflection point for Italy to have been on the 21st of March, a plausible end date to be on the 14th of May and expect the total number of infected people to be between 155 thousand and 185 thousand people.","PeriodicalId":137980,"journal":{"name":"Public Health eJournal","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Public Health eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3567770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Epidemic analysis by dynamical modelling is a reliable and insightful way to analyse epidemiological data in order to extract key indicators about the outbreak and to make predictions on its future course. We develop a generalised SEIR model based on Peng et al. 2020 and estimate it on a national and regional level against the data published daily by the Italian Dipartimento della Protezione Civile. We find the inflection point for Italy to have been on the 21st of March, a plausible end date to be on the 14th of May and expect the total number of infected people to be between 155 thousand and 185 thousand people.
基于动态模型的意大利COVID-19流行分析
通过动态建模进行流行病分析是分析流行病学数据的一种可靠和有见地的方法,以便提取有关疫情的关键指标并对其未来进程作出预测。我们基于Peng et al. 2020开发了一个广义的SEIR模型,并根据意大利民政部门每天发布的数据在国家和地区层面进行估计。我们发现,意大利的拐点是3月21日,一个合理的结束日期是5月14日,预计感染总人数将在15.5万至18.5万人之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信