On confidence intervals for P (X < Y )

Youhei Kawasaki, Youhei Kawasaki, E. Miyaoka
{"title":"On confidence intervals for P (X < Y )","authors":"Youhei Kawasaki, Youhei Kawasaki, E. Miyaoka","doi":"10.5183/JJSCS.23.1_1","DOIUrl":null,"url":null,"abstract":"We assume X and Y be two independent random variables and define θ=P (X < Y ). The inference for θ can be found in various fields. This paper not only compares several methods for constructing the confidence interval for θ in a small sample but also proposes some new methods. The intervals derived by these new methods show good performance in a small sample, and their actual coverage probability is close to the nominal level. In addition, one of the biggest advantages of our methods is that it does not require complicated calculations.","PeriodicalId":338719,"journal":{"name":"Journal of the Japanese Society of Computational Statistics","volume":"273 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japanese Society of Computational Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5183/JJSCS.23.1_1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We assume X and Y be two independent random variables and define θ=P (X < Y ). The inference for θ can be found in various fields. This paper not only compares several methods for constructing the confidence interval for θ in a small sample but also proposes some new methods. The intervals derived by these new methods show good performance in a small sample, and their actual coverage probability is close to the nominal level. In addition, one of the biggest advantages of our methods is that it does not require complicated calculations.
关于P (X < Y)的置信区间
假设X和Y是两个独立的随机变量,定义θ=P (X < Y)。θ的推理可以在各个领域找到。本文不仅比较了在小样本条件下构造θ置信区间的几种方法,而且提出了一些新的方法。新方法得到的区间在小样本范围内具有良好的性能,其实际覆盖概率接近名义水平。此外,我们的方法最大的优点之一是它不需要复杂的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信