The Riemann extension of an affine Osserman connection on 3-dimensional manifold

A. Diallo
{"title":"The Riemann extension of an affine Osserman connection on 3-dimensional manifold","authors":"A. Diallo","doi":"10.16929/SBS/2018.100-03-04","DOIUrl":null,"url":null,"abstract":"The Riemannian extension of torsion free affine manifolds (M,∇) is an important method to produce pseudo-Riemannian manifolds. It is know that, if the manifold (M,∇) is a torsion-free affine two-dimensional manifold with skew symmetric tensor Ricci, then (M,∇) is affine Osserman manifold . In higher dimensions the skew symmetric of the tensor Ricci is a necessary but not sufficient condition for a affine connection to be Osserman. In this paper we construct affine Osserman connection with Ricci flat but not flat and example of Osserman pseudo-Riemannian metric of signature (3, 3) is exhibited.","PeriodicalId":321019,"journal":{"name":"A Collection of Papers in Mathematics and Related Sciences, a festschrift in honour of the late Galaye Dia","volume":"371 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"A Collection of Papers in Mathematics and Related Sciences, a festschrift in honour of the late Galaye Dia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16929/SBS/2018.100-03-04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The Riemannian extension of torsion free affine manifolds (M,∇) is an important method to produce pseudo-Riemannian manifolds. It is know that, if the manifold (M,∇) is a torsion-free affine two-dimensional manifold with skew symmetric tensor Ricci, then (M,∇) is affine Osserman manifold . In higher dimensions the skew symmetric of the tensor Ricci is a necessary but not sufficient condition for a affine connection to be Osserman. In this paper we construct affine Osserman connection with Ricci flat but not flat and example of Osserman pseudo-Riemannian metric of signature (3, 3) is exhibited.
三维流形上仿射Osserman连接的黎曼扩展
无扭转仿射流形(M,∇)的黎曼扩展是生成伪黎曼流形的重要方法。已知,如果流形(M,∇)是具有偏对称张量Ricci的无扭仿射二维流形,则(M,∇)是仿射Osserman流形。在高维中,Ricci张量的偏对称是仿射连接为Osserman的必要条件,但不是充分条件。本文构造了Ricci平而非平的仿射Osserman连接,并给出了签名(3,3)的Osserman伪黎曼度规的一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信