Analyzing the Escherichia coli gene expression data by a multilayer adjusted tree organizing map

Ning Wei, L. Gruenwald, T. Conway
{"title":"Analyzing the Escherichia coli gene expression data by a multilayer adjusted tree organizing map","authors":"Ning Wei, L. Gruenwald, T. Conway","doi":"10.1109/BIBE.2003.1188965","DOIUrl":null,"url":null,"abstract":"Using the DNA microarray technology, biologists have thousands of array data available. Discovering the function relations between genes and their involvements in biological processes depends on the ability to efficiently process and quantitatively analyze large amounts of array data. Clustering algorithms are among the popular tools that can be used to help biologists achieve their goals. Although some existing research projects employed clustering algorithms on biological data, none of them has examined the Escherichia coli (E. coli) gene expression data. This paper proposes a clustering algorithm called Multilayer Adjusted Tree Organizing Map (MA TOM) to analyze the E. coli gene expression data. In a semi-supervised manner, MATOM constructs a multilayer map, and at the same time, removes noise data in the previously trained maps in order to improve the training process. This paper then presents the clustering results produced by MATOM and other existing clustering algorithms using the E. coli gene expression data, and a new evaluation method to assess them. The results show that MATOM performs the best in terms of percentage of genes that are clustered correctly.","PeriodicalId":178814,"journal":{"name":"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2003.1188965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using the DNA microarray technology, biologists have thousands of array data available. Discovering the function relations between genes and their involvements in biological processes depends on the ability to efficiently process and quantitatively analyze large amounts of array data. Clustering algorithms are among the popular tools that can be used to help biologists achieve their goals. Although some existing research projects employed clustering algorithms on biological data, none of them has examined the Escherichia coli (E. coli) gene expression data. This paper proposes a clustering algorithm called Multilayer Adjusted Tree Organizing Map (MA TOM) to analyze the E. coli gene expression data. In a semi-supervised manner, MATOM constructs a multilayer map, and at the same time, removes noise data in the previously trained maps in order to improve the training process. This paper then presents the clustering results produced by MATOM and other existing clustering algorithms using the E. coli gene expression data, and a new evaluation method to assess them. The results show that MATOM performs the best in terms of percentage of genes that are clustered correctly.
利用多层调整树组织图分析大肠杆菌基因表达数据
使用DNA微阵列技术,生物学家有成千上万的阵列数据可用。发现基因之间的功能关系及其在生物过程中的参与依赖于有效处理和定量分析大量阵列数据的能力。聚类算法是可以用来帮助生物学家实现目标的流行工具之一。虽然现有的一些研究项目在生物数据上使用了聚类算法,但没有一个研究项目检测过大肠杆菌(E. coli)的基因表达数据。本文提出了一种多层调整树组织图(Multilayer Adjusted Tree Organizing Map, MA TOM)聚类算法来分析大肠杆菌基因表达数据。MATOM以半监督的方式构建多层地图,同时去除之前训练地图中的噪声数据,以改善训练过程。然后,本文介绍了利用大肠杆菌基因表达数据,利用MATOM和其他现有聚类算法产生的聚类结果,以及一种新的评估方法。结果表明,就正确聚类的基因百分比而言,MATOM表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信