PDNet: an advanced architecture for polyp image segmentation

Hanqing Liu, Zhipeng Zhao, Ruichun Tang, Peishun Liu, Yixin Chen, Jianjun Zhang, Jing Jia
{"title":"PDNet: an advanced architecture for polyp image segmentation","authors":"Hanqing Liu, Zhipeng Zhao, Ruichun Tang, Peishun Liu, Yixin Chen, Jianjun Zhang, Jing Jia","doi":"10.1117/12.2643392","DOIUrl":null,"url":null,"abstract":"In order to improve the segmentation accuracy of polyp image segmentation under colonoscopy, we propose PVT Dual-Upsampling Net (PDNet). PDNet adopts the encoder network based on Transformer as the backbone network for downsampling, and designs a dual upsampling module based on cascaded fusion network and simple connection network to recover the loss of high-level image features caused by the downsampling process, and obtains a high-level semantic feature map with the same resolution as the input image. The multi-feature fusion module is used to aggregate the low-level feature map and high-level semantic feature map. We validate the model on three publicly available datasets, and our experimental evaluations show that the suggested architecture produces good segmentation results on datasets.","PeriodicalId":314555,"journal":{"name":"International Conference on Digital Image Processing","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Digital Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2643392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to improve the segmentation accuracy of polyp image segmentation under colonoscopy, we propose PVT Dual-Upsampling Net (PDNet). PDNet adopts the encoder network based on Transformer as the backbone network for downsampling, and designs a dual upsampling module based on cascaded fusion network and simple connection network to recover the loss of high-level image features caused by the downsampling process, and obtains a high-level semantic feature map with the same resolution as the input image. The multi-feature fusion module is used to aggregate the low-level feature map and high-level semantic feature map. We validate the model on three publicly available datasets, and our experimental evaluations show that the suggested architecture produces good segmentation results on datasets.
PDNet:用于息肉图像分割的高级架构
为了提高结肠镜下息肉图像分割的精度,提出了PVT双上采样网络(PDNet)。PDNet采用基于Transformer的编码器网络作为下采样的骨干网络,并设计了基于级联融合网络和简单连接网络的双上采样模块,恢复下采样过程中丢失的高级图像特征,得到与输入图像分辨率相同的高级语义特征图。多特征融合模块用于聚合低级特征图和高级语义特征图。我们在三个公开可用的数据集上验证了该模型,我们的实验评估表明,所建议的架构在数据集上产生了良好的分割结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信