Part-based pedestrian detection using HoG features and vertical symmetry

Andrei Claudiu Cosma, R. Brehar, S. Nedevschi
{"title":"Part-based pedestrian detection using HoG features and vertical symmetry","authors":"Andrei Claudiu Cosma, R. Brehar, S. Nedevschi","doi":"10.1109/ICCP.2012.6356190","DOIUrl":null,"url":null,"abstract":"This paper describes a new approach for pedestrian detection in traffic scenes. The originality of the method resides in the combination of the benefits of the symmetry characteristic for pedestrians in intensity images and the benefits of deformable part-based models for recognizing pedestrians in multiple object hypotheses generated by a stereo vision system. A mixture model based on several pedestrian attitudes is used for addressing the large intraclass variability that pedestrians may have (they may have different poses and attitudes like: standing, walking, running etc). We have used a probabilistic approach based on support vector machine (SVM) and histograms of gradient orientations (HoG) features for pedestrian classification.","PeriodicalId":406461,"journal":{"name":"2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2012.6356190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper describes a new approach for pedestrian detection in traffic scenes. The originality of the method resides in the combination of the benefits of the symmetry characteristic for pedestrians in intensity images and the benefits of deformable part-based models for recognizing pedestrians in multiple object hypotheses generated by a stereo vision system. A mixture model based on several pedestrian attitudes is used for addressing the large intraclass variability that pedestrians may have (they may have different poses and attitudes like: standing, walking, running etc). We have used a probabilistic approach based on support vector machine (SVM) and histograms of gradient orientations (HoG) features for pedestrian classification.
基于部件的HoG特征和垂直对称行人检测
本文提出了一种新的交通场景行人检测方法。该方法的独创性在于结合了行人在强度图像中的对称性特征和立体视觉系统生成的多目标假设中识别行人的可变形部分模型的优点。基于几种行人姿态的混合模型用于解决行人可能具有的较大类内可变性(他们可能具有不同的姿势和姿态,例如:站立,行走,跑步等)。我们使用基于支持向量机(SVM)和梯度方向直方图(HoG)特征的概率方法进行行人分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信