Application of Superpixel to identify Maggots and their larval stages

L. D. Lima, Eudamara Barbosa da Silva Acosta, A. B. Gonçalves, M. Pache, D. Sant’Ana, Celso Soares Costa, H. Pistori, A. Ferreira, C. Elisei
{"title":"Application of Superpixel to identify Maggots and their larval stages","authors":"L. D. Lima, Eudamara Barbosa da Silva Acosta, A. B. Gonçalves, M. Pache, D. Sant’Ana, Celso Soares Costa, H. Pistori, A. Ferreira, C. Elisei","doi":"10.1109/WVC.2019.8876927","DOIUrl":null,"url":null,"abstract":"Flies maggots are used to estimate the postmortem interval (PMI) through their developmental time in forensic entomology. Maggots identification is hard since they often have similar morphologies. Computer vision techniques and machine learning seem to be a good alternative to solve this problem. The aim is to create maggots microscopic images database and apply the dataset with an algorithm to automate the maggots identification. Although that approach could be used in forensic entomological identification and criminal expertise, this paper focuses on comparing the image classifications with IBK, J48, Random Forest and Random Tree classifiers. The Random Forest algorithm achieved the best performance, which was above 80% in most tests using the precision metric (P).","PeriodicalId":144641,"journal":{"name":"2019 XV Workshop de Visão Computacional (WVC)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 XV Workshop de Visão Computacional (WVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WVC.2019.8876927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Flies maggots are used to estimate the postmortem interval (PMI) through their developmental time in forensic entomology. Maggots identification is hard since they often have similar morphologies. Computer vision techniques and machine learning seem to be a good alternative to solve this problem. The aim is to create maggots microscopic images database and apply the dataset with an algorithm to automate the maggots identification. Although that approach could be used in forensic entomological identification and criminal expertise, this paper focuses on comparing the image classifications with IBK, J48, Random Forest and Random Tree classifiers. The Random Forest algorithm achieved the best performance, which was above 80% in most tests using the precision metric (P).
超像素技术在蛆及其幼虫鉴定中的应用
在法医昆虫学中,蝇蛆通过其发育时间来估计死后时间。蛆很难识别,因为它们通常有相似的形态。计算机视觉技术和机器学习似乎是解决这个问题的一个很好的选择。目的是建立蛆虫显微图像数据库,并应用该数据库与算法自动识别蛆虫。虽然该方法可用于法医昆虫学鉴定和犯罪鉴定,但本文主要将图像分类与IBK、J48、随机森林和随机树分类器进行比较。随机森林算法获得了最好的性能,在使用精度度量(P)的大多数测试中,其性能都在80%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信