Cramér-Rao type lower bounds for relative sensor registration process

S. Fortunati, F. Gini, M. Greco, A. Farina, A. Graziano, S. Giompapa
{"title":"Cramér-Rao type lower bounds for relative sensor registration process","authors":"S. Fortunati, F. Gini, M. Greco, A. Farina, A. Graziano, S. Giompapa","doi":"10.1109/TSP.2010.2097258","DOIUrl":null,"url":null,"abstract":"This paper concerns the study of the Cramér-Rao type lower bounds for relative sensor registration (or grid-locking) problem. The theoretical performance bound is of fundamental importance both for algorithm performance assessment and for prediction of the best achievable performance given sensor locations, sensor number, and accuracy of sensor measurements. First, a general description of the relative grid-locking problem is given. Afterwards, the measurement model is analyzed. In particular, the nonlinearity of the measurement model and all the biases (attitude biases, measurement biases, and position biases) are taken into account. Finally, the Cramér-Rao lower bound (CRLB) is discussed and two different types of CRLB, the Hybrid CRLB (HCRLB) and the Modified CRLB (MCRLB), are calculated. Theoretical and simulated results are shown.","PeriodicalId":409817,"journal":{"name":"2010 18th European Signal Processing Conference","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 18th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2010.2097258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

This paper concerns the study of the Cramér-Rao type lower bounds for relative sensor registration (or grid-locking) problem. The theoretical performance bound is of fundamental importance both for algorithm performance assessment and for prediction of the best achievable performance given sensor locations, sensor number, and accuracy of sensor measurements. First, a general description of the relative grid-locking problem is given. Afterwards, the measurement model is analyzed. In particular, the nonlinearity of the measurement model and all the biases (attitude biases, measurement biases, and position biases) are taken into account. Finally, the Cramér-Rao lower bound (CRLB) is discussed and two different types of CRLB, the Hybrid CRLB (HCRLB) and the Modified CRLB (MCRLB), are calculated. Theoretical and simulated results are shown.
相对传感器配准过程的cram - rao型下限
本文研究了相对传感器配准(或网格锁定)问题的cram r- rao型下界。理论性能界对于算法性能评估和预测给定传感器位置、传感器数量和传感器测量精度的最佳可实现性能都至关重要。首先,给出了相对网格锁定问题的一般描述。然后,对测量模型进行了分析。特别地,测量模型的非线性和所有的偏差(姿态偏差、测量偏差和位置偏差)都被考虑在内。最后,讨论了cram - rao下限(CRLB),并计算了两种不同类型的CRLB,即混合CRLB (HCRLB)和改进CRLB (MCRLB)。给出了理论和仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信