P. Xia, Naoya Nagahama, X. Quan, K. Nitta, O. Matoba, Y. Awatsuji
{"title":"Improvement of reconstructed phase distribution of fast moving phase object in digital holographic microscope","authors":"P. Xia, Naoya Nagahama, X. Quan, K. Nitta, O. Matoba, Y. Awatsuji","doi":"10.1117/12.2216745","DOIUrl":null,"url":null,"abstract":"For defect detection or undesired object in commercial products, it is required to develop a fast measurement system that can obtain three-dimensional distribution of surface of the opaque medium such as metal or inside of the transparent medium. For this purpose, we fabricated a digital holographic microscope using a fast image sensor when the phase object is put on a fast movable stage. In the fabricated system, an image sensor operated at maximum frame rate of 2000 fps and a movable stage operated at maximum speed of 300 mm/s are introduced. Under the continuous wave illumination, motion-blurred phase object is reconstructed. By using numerical processing such as deconvolution filter, the reconstructed phase distribution is much improved. Numerical results are presented.","PeriodicalId":227483,"journal":{"name":"SPIE BiOS","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE BiOS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2216745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For defect detection or undesired object in commercial products, it is required to develop a fast measurement system that can obtain three-dimensional distribution of surface of the opaque medium such as metal or inside of the transparent medium. For this purpose, we fabricated a digital holographic microscope using a fast image sensor when the phase object is put on a fast movable stage. In the fabricated system, an image sensor operated at maximum frame rate of 2000 fps and a movable stage operated at maximum speed of 300 mm/s are introduced. Under the continuous wave illumination, motion-blurred phase object is reconstructed. By using numerical processing such as deconvolution filter, the reconstructed phase distribution is much improved. Numerical results are presented.