Hadoop-Based Distributed Computing Algorithms for Healthcare and Clinic Data Processing

Jun Ni, Ying Chen, Jie Sha, Minghuan Zhang
{"title":"Hadoop-Based Distributed Computing Algorithms for Healthcare and Clinic Data Processing","authors":"Jun Ni, Ying Chen, Jie Sha, Minghuan Zhang","doi":"10.1109/ICICSE.2015.41","DOIUrl":null,"url":null,"abstract":"There exit a huge demand on utilizing big data technology to process healthcare related patients data for healthcare information extraction and medical knowledge discovery. In this paper, we briefly review the demands and application potentials using big data technology with an emphasis on common challenges. After briefly addressing the Hadoop/MapReduce code components and modules, we use a simple clinic data to demonstrate how to map and reduce on small dataset with illustrated workflow. We give simple scenario of using other MapReduce calculation modules for counting and classification. This serves as a basic step into future utilization of big data to healthcare domain.","PeriodicalId":159836,"journal":{"name":"2015 Eighth International Conference on Internet Computing for Science and Engineering (ICICSE)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Eighth International Conference on Internet Computing for Science and Engineering (ICICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICSE.2015.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

There exit a huge demand on utilizing big data technology to process healthcare related patients data for healthcare information extraction and medical knowledge discovery. In this paper, we briefly review the demands and application potentials using big data technology with an emphasis on common challenges. After briefly addressing the Hadoop/MapReduce code components and modules, we use a simple clinic data to demonstrate how to map and reduce on small dataset with illustrated workflow. We give simple scenario of using other MapReduce calculation modules for counting and classification. This serves as a basic step into future utilization of big data to healthcare domain.
基于hadoop的医疗保健和临床数据处理分布式计算算法
利用大数据技术对医疗相关患者数据进行处理,进行医疗信息提取和医学知识发现的需求巨大。在本文中,我们简要回顾了大数据技术的需求和应用潜力,并强调了共同的挑战。在简要介绍了Hadoop/MapReduce代码组件和模块之后,我们使用一个简单的临床数据来演示如何在小数据集上进行映射和约简。我们给出了使用其他MapReduce计算模块进行计数和分类的简单场景。这是未来将大数据应用于医疗保健领域的基本步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信