Denoise Auto-Encoder Based Speckle Reduction for RISAT-1 SAR Imagery

Trupti G. Kamod, P. Rege, S. Kulkarni
{"title":"Denoise Auto-Encoder Based Speckle Reduction for RISAT-1 SAR Imagery","authors":"Trupti G. Kamod, P. Rege, S. Kulkarni","doi":"10.1109/SPIN52536.2021.9566055","DOIUrl":null,"url":null,"abstract":"Synthetic aperture radar (SAR) images can pass through cloud cover, dry particles, and haze except for heavy rainfall. Therefore, they are available in all climates, all the time. However, the SAR images are corrupted by speckle noise generated by coherent processing of SAR signal. In this paper, the denoise auto-encoder model is proposed to reduce the speckle noise in SAR images, and the performance of the auto-encoder model is compared with different spatial-domain adaptive filters viz. Lee, Frost, Enhanced Lee, Enhanced Frost. The performance of the proposed denoising encoder is assessed using visual analysis, and quantitative evaluation using metrics, viz. equivalent number of looks (ENL), speckle suppression index (SSI) and speckle suppression and mean preservation index (SMPI). The evaluation of the denoise auto-encoder reveals that its performance is better than spatial- domain adaptive filters.","PeriodicalId":343177,"journal":{"name":"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPIN52536.2021.9566055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Synthetic aperture radar (SAR) images can pass through cloud cover, dry particles, and haze except for heavy rainfall. Therefore, they are available in all climates, all the time. However, the SAR images are corrupted by speckle noise generated by coherent processing of SAR signal. In this paper, the denoise auto-encoder model is proposed to reduce the speckle noise in SAR images, and the performance of the auto-encoder model is compared with different spatial-domain adaptive filters viz. Lee, Frost, Enhanced Lee, Enhanced Frost. The performance of the proposed denoising encoder is assessed using visual analysis, and quantitative evaluation using metrics, viz. equivalent number of looks (ENL), speckle suppression index (SSI) and speckle suppression and mean preservation index (SMPI). The evaluation of the denoise auto-encoder reveals that its performance is better than spatial- domain adaptive filters.
基于噪声自动编码器的RISAT-1 SAR图像散斑抑制
合成孔径雷达(SAR)图像可以穿过云层、干燥颗粒和雾霾,但大雨除外。因此,它们在任何气候、任何时间都适用。然而,对SAR信号进行相干处理时产生的散斑噪声会对SAR图像造成破坏。为了降低SAR图像中的散斑噪声,本文提出了一种降噪自编码器模型,并比较了不同空域自适应滤波器(Lee、Frost、Enhanced Lee、Enhanced Frost)的性能。采用视觉分析方法对所提出的去噪编码器的性能进行了评估,并使用等效外观数(ENL)、散斑抑制指数(SSI)和散斑抑制和平均保存指数(SMPI)等指标进行了定量评估。对噪声自编码器的性能评价表明,其性能优于空间域自适应滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信