Takagi-Sugeno-Kang fuzzy PID control for DC electrical machines

L. Palma, R. Antunes, P. Gil, Vasco Brito
{"title":"Takagi-Sugeno-Kang fuzzy PID control for DC electrical machines","authors":"L. Palma, R. Antunes, P. Gil, Vasco Brito","doi":"10.1109/CPE-POWERENG48600.2020.9161668","DOIUrl":null,"url":null,"abstract":"This paper deals with Takagi-Sugeno-Kang (TSK) type fuzzy PID controllers in the context of nonlinear dynamic systems. The design framework for tuning the controller gains depends on particle swarm optimization (PSO), assuming the nonlinear system approximated by an artificial neural network, leading to an overall robust control methodology based on TSK fuzzy PID control. Obtained data and information from simulations and experimental tests considering a nonlinear dynamic process including a DC electrical machine confirm the effectiveness of the control strategy.","PeriodicalId":111104,"journal":{"name":"2020 IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPE-POWERENG48600.2020.9161668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper deals with Takagi-Sugeno-Kang (TSK) type fuzzy PID controllers in the context of nonlinear dynamic systems. The design framework for tuning the controller gains depends on particle swarm optimization (PSO), assuming the nonlinear system approximated by an artificial neural network, leading to an overall robust control methodology based on TSK fuzzy PID control. Obtained data and information from simulations and experimental tests considering a nonlinear dynamic process including a DC electrical machine confirm the effectiveness of the control strategy.
直流电机模糊PID控制
本文研究了非线性动态系统中的TSK型模糊PID控制器。基于粒子群优化(PSO)的控制器增益整定设计框架,假设非线性系统由人工神经网络逼近,从而得到基于TSK模糊PID控制的整体鲁棒控制方法。通过对包括直流电机在内的非线性动态过程的仿真和实验验证了该控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信