Nanoscale Cluster Detection in Massive Atom Probe Tomography Data

S. Seal, Srikanth B. Yoginath, Michael K. Miller
{"title":"Nanoscale Cluster Detection in Massive Atom Probe Tomography Data","authors":"S. Seal, Srikanth B. Yoginath, Michael K. Miller","doi":"10.1109/IPDPSW.2014.133","DOIUrl":null,"url":null,"abstract":"Recent technological advances in atom probe tomography (APT) have led to unprecedented data acquisition capabilities that routinely generate data sets containing hundreds of millions of atoms. Detecting nanoscale clusters of different atom types present in these enormous amounts of data and analyzing their spatial correlations with one another are fundamental to understanding the structural properties of the material from which the data is derived. Extant algorithms for nanoscale cluster detection do not scale to large data sets. Here, a scalable, CUDA-based implementation of an autocorrelation algorithm is presented. It isolates spatial correlations amongst atomic clusters present in massive APT data sets in linear time using a linear amount of storage. Correctness of the algorithm is demonstrated using large synthetically generated data with known spatial distributions. Benefits and limitations of using GPU-acceleration for autocorrelation-based APT data analyses are presented with supporting performance results on data sets with up to billions of atoms. To our knowledge, this is the first nanoscale cluster detection algorithm that scales to massive APT data sets and executes on commodity hardware.","PeriodicalId":153864,"journal":{"name":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2014.133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Recent technological advances in atom probe tomography (APT) have led to unprecedented data acquisition capabilities that routinely generate data sets containing hundreds of millions of atoms. Detecting nanoscale clusters of different atom types present in these enormous amounts of data and analyzing their spatial correlations with one another are fundamental to understanding the structural properties of the material from which the data is derived. Extant algorithms for nanoscale cluster detection do not scale to large data sets. Here, a scalable, CUDA-based implementation of an autocorrelation algorithm is presented. It isolates spatial correlations amongst atomic clusters present in massive APT data sets in linear time using a linear amount of storage. Correctness of the algorithm is demonstrated using large synthetically generated data with known spatial distributions. Benefits and limitations of using GPU-acceleration for autocorrelation-based APT data analyses are presented with supporting performance results on data sets with up to billions of atoms. To our knowledge, this is the first nanoscale cluster detection algorithm that scales to massive APT data sets and executes on commodity hardware.
海量原子探针层析成像数据中的纳米级簇检测
原子探针断层扫描(APT)的最新技术进步带来了前所未有的数据采集能力,可以常规生成包含数亿个原子的数据集。检测这些海量数据中存在的不同原子类型的纳米级簇,并分析它们彼此之间的空间相关性,对于理解数据来源的材料的结构特性至关重要。现有的纳米级聚类检测算法不能扩展到大型数据集。本文提出了一种可扩展的、基于cuda的自相关算法。它在线性时间内使用线性存储量隔离大量APT数据集中存在的原子簇之间的空间相关性。使用已知空间分布的大型综合生成数据证明了该算法的正确性。介绍了使用gpu加速进行基于自相关的APT数据分析的好处和局限性,并在多达数十亿个原子的数据集上支持性能结果。据我们所知,这是第一个纳米级集群检测算法,可以扩展到海量APT数据集,并在商用硬件上执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信