{"title":"New bäcklund transformation and exact solutions for variable coefficient KdV equation","authors":"Yan Zhen-ya, Zhang Hong-qing","doi":"10.1088/1004-423X/8/12/002","DOIUrl":null,"url":null,"abstract":"In this paper, with the aid of Lax pairs, a new Backlund transformation for the variable coefficient KdV equation is found. Based on the Backlund transformation, only if integration is needed, a series of exact solutions can be obtained. This method is important for finding more new and physical-signficant solutions.","PeriodicalId":188146,"journal":{"name":"Acta Physica Sinica (overseas Edition)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physica Sinica (overseas Edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1004-423X/8/12/002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, with the aid of Lax pairs, a new Backlund transformation for the variable coefficient KdV equation is found. Based on the Backlund transformation, only if integration is needed, a series of exact solutions can be obtained. This method is important for finding more new and physical-signficant solutions.