{"title":"A Posterior-Based Wald-Type Statistic for Hypothesis Testing","authors":"Yong Li, Xiaobin Liu, T. Zeng, Jun Yu","doi":"10.2139/ssrn.3184330","DOIUrl":null,"url":null,"abstract":"A new Wald-type statistic is proposed for hypothesis testing based on Bayesian posterior distributions. The new statistic can be explained as a posterior version of Wald test and have several nice properties. First, it is well-defi ned under improper prior distributions. Second, it avoids Jeffreys-Lindley's paradox. Third, under the null hypothesis and repeated sampling, it follows a x2 distribution asymptotically, offering an asymptotically pivotal test. Fourth, it only requires inverting the posterior covariance for the parameters of interest. Fifth and perhaps most importantly, when a random sample from the posterior distribution (such as an MCMC output) is available, the proposed statistic can be easily obtained as a by-product of posterior simulation. In addition, the numerical standard error of the estimated proposed statistic can be computed based on the random sample. The finite sample performance of the statistic is examined in Monte Carlo studies. The method is applied to two latent variable models used in microeconometrics and financial econometrics.","PeriodicalId":425229,"journal":{"name":"ERN: Hypothesis Testing (Topic)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Hypothesis Testing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3184330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
A new Wald-type statistic is proposed for hypothesis testing based on Bayesian posterior distributions. The new statistic can be explained as a posterior version of Wald test and have several nice properties. First, it is well-defi ned under improper prior distributions. Second, it avoids Jeffreys-Lindley's paradox. Third, under the null hypothesis and repeated sampling, it follows a x2 distribution asymptotically, offering an asymptotically pivotal test. Fourth, it only requires inverting the posterior covariance for the parameters of interest. Fifth and perhaps most importantly, when a random sample from the posterior distribution (such as an MCMC output) is available, the proposed statistic can be easily obtained as a by-product of posterior simulation. In addition, the numerical standard error of the estimated proposed statistic can be computed based on the random sample. The finite sample performance of the statistic is examined in Monte Carlo studies. The method is applied to two latent variable models used in microeconometrics and financial econometrics.