Cluster-Pairwise Discriminant Analysis

Yasushi Makihara, Y. Yagi
{"title":"Cluster-Pairwise Discriminant Analysis","authors":"Yasushi Makihara, Y. Yagi","doi":"10.1109/ICPR.2010.146","DOIUrl":null,"url":null,"abstract":"Pattern recognition problems often suffer from the larger intra-class variation due to situation variations such as pose, walking speed, and clothing variations in gait recognition. This paper describes a method of discriminant subspace analysis focused on situation cluster pair. In training phase, both a situation cluster discriminant subspace and class discriminant subspaces for the situation cluster pair by using training samples of non recognition-target classes. In testing phase, given a matching pair of patterns of recognition-target classes, posterior of situation cluster pairs is estimated at first, and then the distance is calculated in the corresponding cluster-pairwise class discriminant subspace. The experiments both with simulation data and real data show the effectiveness of the proposed method.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Pattern recognition problems often suffer from the larger intra-class variation due to situation variations such as pose, walking speed, and clothing variations in gait recognition. This paper describes a method of discriminant subspace analysis focused on situation cluster pair. In training phase, both a situation cluster discriminant subspace and class discriminant subspaces for the situation cluster pair by using training samples of non recognition-target classes. In testing phase, given a matching pair of patterns of recognition-target classes, posterior of situation cluster pairs is estimated at first, and then the distance is calculated in the corresponding cluster-pairwise class discriminant subspace. The experiments both with simulation data and real data show the effectiveness of the proposed method.
聚类两两判别分析
在步态识别中,由于姿势、行走速度和服装等情况的变化,模式识别问题往往存在较大的类内差异。本文提出了一种基于情景聚类对的判别子空间分析方法。在训练阶段,使用非识别目标类的训练样本对情景聚类对建立情景聚类判别子空间和类别判别子空间。在测试阶段,给定识别-目标类的匹配模式对,首先估计情景聚类对的后验,然后在相应的聚类对类判别子空间中计算距离。仿真数据和实际数据的实验表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信