BI-HAMILTONIAN STRUCTURE AND EXACT SOLUTIONS OF ONE BURGERS� TYPE NONLINEAR DYNAMICAL SYSTEM

M. Prytula, I. Mykhailiuk
{"title":"BI-HAMILTONIAN STRUCTURE AND EXACT\nSOLUTIONS OF ONE BURGERS� TYPE NONLINEAR\nDYNAMICAL SYSTEM","authors":"M. Prytula, I. Mykhailiuk","doi":"10.30970/VAM.2020.28.10948","DOIUrl":null,"url":null,"abstract":"In the present work, we find the bi-Hamiltonian representation and three classes of ex￾act solutions for the dispersionful (Burgers’ type) nonlinear dynamical system introduced by Szablikowski et al. [13]. In particular, for the above-mentioned system, we construct the infinite hierarchy of functionally independent conservation laws utilizing the gradient holonomic method [3]. Moreover, based on that hierarchy we find the implectic pair of Noetherian operators and corresponding Hamiltonian functionals applying the differential￾algebraic algorithm [8, 12]. Furthermore, we construct three classes of exact traveling wave solutions, in particular, solitary wave and periodic ones, using the –expansion method [18]. It is shown that for the case of the dynamical system under consideration, degrees of the polynomials in  cannot be uniquely determined from the system of algebraic equations of the homogeneous balance. Nevertheless, utilizing a more detailed analysis, a general form of the solution is found uniquely. Further, we analyze the obtained results, in particular, the analytical solution is verified by putting it back into original equations. Finally, we anticipate future research objectives, especially finding the standard Lax type representation of the above-mentioned dynamical system.","PeriodicalId":302104,"journal":{"name":"Application Mathematics and Informatics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Application Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/VAM.2020.28.10948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the present work, we find the bi-Hamiltonian representation and three classes of ex￾act solutions for the dispersionful (Burgers’ type) nonlinear dynamical system introduced by Szablikowski et al. [13]. In particular, for the above-mentioned system, we construct the infinite hierarchy of functionally independent conservation laws utilizing the gradient holonomic method [3]. Moreover, based on that hierarchy we find the implectic pair of Noetherian operators and corresponding Hamiltonian functionals applying the differential￾algebraic algorithm [8, 12]. Furthermore, we construct three classes of exact traveling wave solutions, in particular, solitary wave and periodic ones, using the –expansion method [18]. It is shown that for the case of the dynamical system under consideration, degrees of the polynomials in  cannot be uniquely determined from the system of algebraic equations of the homogeneous balance. Nevertheless, utilizing a more detailed analysis, a general form of the solution is found uniquely. Further, we analyze the obtained results, in particular, the analytical solution is verified by putting it back into original equations. Finally, we anticipate future research objectives, especially finding the standard Lax type representation of the above-mentioned dynamical system.
一类非线性动力系统的双哈密顿结构与精确解
在本工作中,我们找到了Szablikowski等人[13]引入的色散(Burgers型)非线性动力系统的双哈密顿表示和三类ex￾act解。特别地,对于上述系统,我们利用梯度完整方法构造了功能独立守恒律的无限层次[3]。此外,基于该层次结构,我们利用微分￾代数算法找到了Noetherian算子的隐隐对和相应的hamilton泛函[8,12]。在此基础上,利用-展开法构造了3类精确行波解,特别是孤波解和周期解[18]。结果表明,对于所考虑的动力系统,在齐次平衡的代数方程组中不能唯一地确定多项式的阶。然而,通过更详细的分析,可以发现解决方案的一般形式是唯一的。进一步对所得结果进行了分析,并将解析解代入原方程进行了验证。最后,展望了未来的研究目标,特别是寻找上述动力系统的标准Lax型表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信